Pages Navigation Menu

ISSN 2227-6017 (ONLINE), ISSN 2303-9868 (PRINT), DOI: 10.18454/IRJ.2227-6017
ПИ № ФС 77 - 51217

DOI: https://doi.org/10.18454/IRJ.2016.53.081

Скачать PDF ( ) Страницы: 157-160 Выпуск: № 11 (53) Часть 4 () Искать в Google Scholar
Цитировать

Цитировать

Электронная ссылка | Печатная ссылка

Скопируйте отформатированную библиографическую ссылку через буфер обмена или перейдите по одной из ссылок для импорта в Менеджер библиографий.
Калытка В. А. КВАНТОВЫЕ ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В ОБЛАСТИ НИЗКИХ ТЕМПЕРАТУР / В. А. Калытка, Б. С. Оспанов, Ж. Б. Байдильдина и др. // Международный научно-исследовательский журнал. — 2016. — № 11 (53) Часть 4. — С. 157—160. — URL: https://research-journal.org/physics-mathematics/quantum-eletrical-phenomena-at-low-temperatures/ (дата обращения: 18.11.2017. ). doi: 10.18454/IRJ.2016.53.081
Калытка В. А. КВАНТОВЫЕ ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В ОБЛАСТИ НИЗКИХ ТЕМПЕРАТУР / В. А. Калытка, Б. С. Оспанов, Ж. Б. Байдильдина и др. // Международный научно-исследовательский журнал. — 2016. — № 11 (53) Часть 4. — С. 157—160. doi: 10.18454/IRJ.2016.53.081

Импортировать


КВАНТОВЫЕ ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В ОБЛАСТИ НИЗКИХ ТЕМПЕРАТУР

Калытка В.А.1, Оспанов Б.С.2, Байдильдина Ж.Б.3, Рымханов Е.С.4

1Кандидат физико-математических наук, доцент, 2Магистрант, 3Преподаватель кафедры энергетические системы , 4Магистрант, Карагандинский государственный технический университет, Караганда, Казахстан

КВАНТОВЫЕ ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В ОБЛАСТИ НИЗКИХ ТЕМПЕРАТУР

Аннотация

Исследуется квантовый механизм миграционной поляризации в слоистых кристаллах в переменном электрическом поле в области низких температур. Вычисляется неравновесная матрица плотности для ансамбля невзаимодействующих протонов двигающихся в одномерном многоямном прямоугольном потенциальном рельефе возмущенном переменным поляризующим полем. Результаты квантово – механического исследования миграционной поляризации могут быть использованы при изучении туннельного механизма спонтанной поляризации сегнетоэлектриков (KDP,DKDP).

Ключевые слова: кристаллы с водородными связями (КВС), миграционная поляризация, протонная релаксация, неравновесная матрица плотности для протонов.

Kalytka V.A.1, Ospanov B.S.2, Baidil’dina Zh.B.3, Rymhanov Y.S.4

1PhD in Physics and Mathematics, Associate professor, 2Master student, 3Lecturer in energy systems, 4Postgraduate student, Karaganda State Technical University, Karaganda, Kazakhstan

QUANTUM ELETRICAL PHENOMENA AT LOW TEMPERATURES

Abstracts

Quantum mechanism of interlayer polarization in layered crystals in alternating electric field in the limits of low temperatures is studied. Unbalanced density matrix is calculated for the ensemble of noninteracting protons, moving in one-dimension multipit potential image of rectangular shape disturbed by variable polarizing field. Results of quantum-mechanical investigation of migratory polarization may be used in the study of tunnel mechanism of spontaneous polarization of ferrielectrics (KDP, DKDP).

Keywords: hydrogen – bonded crystals (HBC), interlayer polarization, proton relaxation, unbalanced proton density matrix.

Introduction

The investigating of nonlinear electrophysical, magnetic and optical properties of instrumental and constructional materials with compound structure of the crystal lattice (layered crystals, ceramics, MDS – structures) is an actual scientific – technical task, which decision should be built in a complex, on a combination of the experimental and theoretical results directed on detection of features of polarizing, magnetic and electrooptical effects in the field [1,2] of phase transition.

In the last 10 years considerable interest for physical materials science represents research of effects of a nanocrystalline state of dielectrics [3,4], semiconductors and a ferroelectric material in the range of low and ultralow temperatures that is important for space and medical technologies.

The kinetic phenomena excited by electric field, in various crystal structures, are reduced to the through movement of free electrons (conductivity current in conductors), diffusion –relaxation movement of interstitial ions [5, 6] (ionic conductivity and polarization in dielectrics), electronically – hole conductivity in semiconductors.

The studies of the kinetic phenomena at polarization and magnetization of a crystal, in case of distribution of carriers of a charge (or magnetic atoms) on levels of energy of a continuous range (classical statistics), has to be based on the solution of the kinetic equation of Boltzmann together with system of the equations of Maxwell under the set boundary conditions [1]. In a case distribution of particles on levels of energy of a diskette range research of statistical properties of system, in lack of degeneration, has to rely on quantum statistics of Boltzmann [2], and kinetics of polarizing and magnetic processes on the quantum kinetic equation of Liouville allowing to calculate the statistical operator of system depending on structure of its Hamiltonian revolted with an external field. From this point of view electrophysical and magnetic properties of various crystals in the wide range of tension of electric and magnetic fields and temperatures can be investigated on the basis of the uniform kinetic theory allowing to calculate experimentally measured macroscopic characteristics (polarization, magnetization) and, on this basis parameters of a crystal lattice and molecular parameters [2] the relaxing particles.

1. Unbalanced density matrix of many-particle system in external perturbations

We will consider a system of interacting particles (relaxation oscillator) moving in a steady crystal potential field 22-11-2016-10-17-38. Unperturbed Hamiltonian of separate particle [1] says

22-11-2016-10-18-22  (1)

The particles are distributed over the energy levels of the discrete spectrum 22-11-2016-10-19-09, according to the [3] Liouville equation

22-11-2016-10-19-25  (2)

describes by the unperturbed stationary statistical operator

22-11-2016-10-20-36  (3)

where 22-11-2016-10-21-29 statistic sum of system; NF – full quantity of particles in system. Unperturbed equilibrium (balanced) density matrix of the system takes the form

22-11-2016-10-22-31  (4)

When imposing on a crystal of external perturbation 22-11-2016-10-23-30, system of particles with Hamiltonian 22-11-2016-10-23-45, described by the equation [3] of Liouville

22-11-2016-10-23-02  (5)

The solution of the operator equation (5), in the first approximation of perturbation theory is constructed in the form 22-11-2016-10-25-31[7], in the steady indignant state, going to asymptotic approach for the revolting amendment  22-11-2016-10-25-41, write indignant stationary statistical system operator

22-11-2016-10-25-58  (6)

In (6) 22-11-2016-10-28-28 the statistical sum of indignant states. The indignant equilibrium (balanced) density matrix of systems has the form

22-11-2016-10-29-25  (7)

In (7), power range of particles En it is calculated taking into account stationary indignation 22-11-2016-10-30-38, in the linear approximation of the perturbation theory  22-11-2016-10-31-01, where 22-11-2016-10-33-00. For large periods of oscillation of the external field, accepting 22-11-2016-10-33-58 [1, 2], we receive the quasi stationary indignant range of energy

22-11-2016-10-34-40  (8)

In (8) the expression 22-11-2016-10-35-40 is calculated as the slowly changed in time function.

According to (8), transform (7) into the type

22-11-2016-10-36-51  (9)

owing in the field of low indignations to 22-11-2016-10-37-49 and taking into account (4), we receive approximate expression

22-11-2016-10-38-30  (10)

In (10) accepted the designation

22-11-2016-10-39-22  (11)

According to 22-11-2016-10-40-07  [1], getting an approximate density matrix

22-11-2016-10-40-53   (12)

2. Quantum effects under polarization of dielectrics at low temperatures

The analysis of the experimental spectra of specific volumetric electric conductivity and tangent of dielectric losses of solid dielectrics with compound crystalline structure (layered minerals, ceramics) showed. That at high temperatures (T = 100 – 450 K) mechanism of dielectric relaxation is reduced to a thermo – activated threw relaxators (ions, dipoles) at the fastening (lattice sites) in the direction power lines (towards the electric lines) of the polarizing field (for cations; cation vacancies) or against the field (for anions, anion vacancies) [2].

The most effective relaxation polarization, is shown in hydrogen bonded crystals (HBC), classified by electrophysical properties in the voltage range of the polarizing field 22-11-2016-10-42-29 and temperatures 22-11-2016-10-42-40 K, as proton semiconductors and dielectrics [2] and characterized by proton conductivity – diffusive transfer of hydrogen ions [H+] (protons) along the hydrogen links towards the electric lines of polarizing field [2]. The totality of the polarization processes associated with relaxation – diffusive motion of the protons in the HBC is determined as a proton relaxation. The molecular mechanism of the polarization of the hydrogen sublattice in the HBC [2] allows classifying it as a migratory polarization.

The kinetics of a proton relaxation in the field of high temperatures is rather well investigated, both experimentally, and theoretically [1]. We measured the temperature spectra of thermally stimulated depolarization currents (TCDP) and frequency – temperature spectra of the tangent of dielectric losses 22-11-2016-10-45-13 in crystals of talc [1], mica and in plaster.

A linear theory of dielectric losses, in good agreement with measurements of the spectra of density of TCDP J(T) in the HBC with a compound crystalline structure (mica, chalcanthite, phlogopite) [1]. For theoretical research of a low-temperature proton relaxation, in HBC, it is not enough linear approach on the polarizing field [2]. In the range of  low temperatures (70 – 100 K), as showed experiment, the dominating contribution to migratory polarization in layered crystals is made by tunneling of protons inside and among [2] the ions of an anion sublattice.

So, studies of the quantum properties of an ensemble of relaxing protons conducted on the basis of the unperturbed (non – disturbed) Hamiltonian of whole the system (crystal) 22-11-2016-12-00-39, without taking into account a proton – proton and a proton – phonon interaction   22-11-2016-12-01-15, in adiabatic approximation 22-11-2016-12-02-04 [1]. Then, we [2] accept to approach

22-11-2016-12-02-42  (13)

where 22-11-2016-12-11-52 total number (full quantity) of protons relaxing at a predetermined activation energy U0  [1]; 22-11-2016-12-15-14 – unperturbed potential image for the proton [2]. By analogy with (12) with respecting (11), in the area of low fields, write the perturbed quasi stationary proton density matrix in the linear approximation of external indignation (perturbation)

22-11-2016-12-16-02  (14)

In the (14) accepted the designations: 22-11-2016-12-17-46unperturbed balanced proton density matrix; 22-11-2016-12-18-21 – the statistical sum of system of the non – interacting protons distributed of levels  22-11-2016-12-18-30 of unperturbed energy spectra. The parameter 22-11-2016-12-20-10  determined for the 22-11-2016-12-20-42 matrix element of dimensionless coordinate 22-11-2016-12-21-21; d – crystal thickness. Upon based 22-11-2016-12-22-15 [4], write the operator of the equilibrium concentration of excess

22-11-2016-12-22-56  (15)

The wave functions 22-11-2016-12-23-49 of stationary states 22-11-2016-12-18-30 were calculated in [1]. The operator of polarization of a proton subsystem, in a variation field 22-11-2016-12-24-45 [2]  taking into account (15) takes the form

22-11-2016-12-25-22  (16)

Full quantum mechanical averaging of the operator 22-11-2016-12-26-35 with the help of the   wave functions of mixed states  22-11-2016-12-27-10 [4], with respecting of (14),  in approximation  of unperturbed density matrix 22-11-2016-12-27-52 [1], finally gives

22-11-2016-12-29-24  (17)

The expression (17) can be used for the calculating of theoretical temperature spectra of stationary (at optic frequency) dielectric constant (SDC) and frequency spectra of complex dielectric permittivity (CDP) of HBC and ferroelectrics (KDP, DKDP). Use of the device of a matrix of density to research of tunneling of protons in a hydrogen sublattice of KDP, will allow, to open, at the molecular level, the quantum nature of electro-voltage effect and to predict nonlinear electrooptical properties [5,6].of a ferroelectric material near a point of phase transition.

Список литературы / References

  1. Калытка В.А. “Аналитическое исследование термостимулированных токов деполяризации в кристаллах с водородными связями при низких температурах” // Диссертация на соискание ученой степени кандидата физико – математических наук, по специальности 01.04.07 “физика конденсированного состояния”, г. Томск,-2012. – Государственная публичная научно – техническая библиотека России. http://library.gpntb.ru.
  2. Анненков Ю.М., Калытка В.А., Коровкин М.В. Квантовые эффекты при миграционной поляризации в нанометровых слоях протонных полупроводников и диэлектриков при сверхнизких температурах // Известия Вузов. Физика. – 2015 г. – Т. 58, № 1. –С. 35 – 41.
  3. Ландау Л.Д., Лифшиц Е.М. Статистическая физика.М.: Наука, 1989. Т.9. – 186 с.
  4. Ландау Л.Д., Лифшиц Е.М. Квантовая механика.М:Наука.1974.Т. 3, –34 с .
  5. Лайнс M., Гласс А.Сегнетоэлектрики. M: Мир, –1981. –436 с.
  6. Левин А. А., Долин С.П., Зайцев A.P. Химическая физика. –1996. –Т. 15. – 84 с.

Список литературы на английском языке / References in English

  1. Kalytka V. A. [“An analytical research of thermostimulated currents of depolarization in crystals with hydrogen communications at low temperatures”]//the Thesis for a degree of the candidate of the physicist – mathematical sciences, in the specialty 01.04.07 of [“the physicist of the condensed state”], Tomsk,-2012. – [The state public it is scientific – technical library of Russia]. http://library.gpntb.ru.
  2. Annenkov Yu. M., Kalytka V. A., Korovkin M. V. [Quantum effects at migratory polarization in nanometer layers of proton semiconductors and dielectrics at ultralow temperatures]//News of Higher education institutions. Physics. – 2015 – V. 58, №. 1. – P. 35 – 41.
  3. Landau L. D., Lifshits E. M. [Statistical physics]. – M: Nauka, 1989. – V.9. – P. 186.
  4. Landau L. D., Lifshits E. M. [Quantum mechanics]. – M:Nauka, 1974. – V. 3, – P. 34.
  5. Layns M., Glass A. [Ferroelectrics]. M: Mir, –1981. – P. 436.
  6. Levin A. A., Dolin S. P., Zaytsev A.P. [Chemical physics]. –1996. – V. 15. – P. 84.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.