Определение сопротивления среды внедрению твердого тела по данным измерений глубины погружения, времени, скорости

Научная статья
DOI:
https://doi.org/10.60797/IRJ.2024.145.41
Выпуск: № 7 (145), 2024
Предложена:
03.05.2024
Принята:
11.07.2024
Опубликована:
17.07.2024
182
1
XML
PDF

Аннотация

Предлагается методика определения сопротивления среды по данным экспериментальных наблюдений за процессом внедрения жесткого инструмента. Для этого вначале определяется вид сопротивления с неизвестными априори параметрами. По заданному характеру реакции материала путем интегрирования закона движения устанавливается зависимость скорости погружения от глубины. Для получения связи глубины погружения от времени зависимость скорости от глубины интегрируется с применением разложения подынтегральной функции в сходящейся ряд. Константы, входящие в формулу для сопротивления среды, находится путем решения неоднородной системы линейных уравнений с правой частью в виде известных данных из эксперимента. Приводится пример расчета сопротивления среды для конкретной ситуации.

1. Введение

В горном деле большое внимание уделяется вопросам внедрения породоразрушающего элемента в массив горных пород

,
,
. В строительстве зданий аналогичные вопросы возникают при забивке свай в грунт
,
,
. Проблема заключается в определении сопротивлении среды внедрению, которое влияет на глубину проникновения, на скорость, время. Сопротивление зависит как от механических свойств самой среды, так и формы оголовника сваи, инструмента
,
,
. Помимо геометрических характеристик, на процесс проникновения влияют еще такие параметры, как передача ударного импульса от ударного устройства внедряемому телу
,
,
. Эта передача может быть абсолютно жесткой, может контролироваться с помощью специальных устройств в виде амортизаторов. Информация о сопротивлении среды важна для выбора, подходящего к данным условиям инструмента, сваи, ее размеров и характеристик.

Современное состояние проблемы внедрения твердых тел в деформируемые преграды характеризуется многочисленными работами отечественных и зарубежных авторов

,
,
. В них деформируемые среды рассматриваются в рамках теории пластичности Прандтля-Рейса
, теории Друкера – Прагера
, в рамках теории Хоека – Брауна
. Проникание исследуется в рамках теории пластичности первоначально анизотропных материалов
,
. Исследуются внедрения тел различной формы от конической до шарообразной
,
. Проблема связана как с прониканием разрушающих инструментов в твердые преграды, так и с установкой свай в мягких грунтах
,
.

2. Основные результаты

Основным уравнением для анализа сопротивления среды является закон движения Ньютона. Представим этот закон в виде

img
(1)

где F – активная сила, R – сопротивление (среды) движению. Традиционно зависимость img задается. Неизвестной в этом уравнении является величина R. Исходя из того, что (1) – это дифференциальное уравнение второго порядка можно допустить, что сопротивление R в общем случае должно зависеть от трех параметров – смещения x, скорости img и времени t, то есть R – это функция вида

img
(2)

Простейшие варианты этой функции: img В последнем случае сопротивление зависит от времени, можно считать, что изменение сопротивления с ростом времени t связано со старением материала. Другой случай, когда сопротивление зависит от скорости движения пробойника, рассматривался в [1,2,24], где сопротивление R изменялось как квадратичная функция img

img
(3)

константы сопротивления B0, B1, Bопределялись на основе экспериментов.

Третий случай изменения сопротивления R с ростом смещения x определим ниже, укажем при этом уравнения для определения входных параметров. Рассмотрим несколько вариантов вычисления R.

Пусть в момент соударения инструмента массой m были выполнены следующие условия: 

img
(4)

Пусть еще сопротивление R зависит от смещения img как 

R = a,

то есть является константой a. Требуется из опытов определить a. Для решения задачи имеем уравнение

img
(5)

Умножив (5) на скорость img, получаем

img
(6)

Из (6) следует при начальных условиях (4)

img

Отсюда

img
(7)

В момент остановки тела img и максимальная глубина погружения оказывается равной 

img
(8)

Откуда при известной величине img находится величина a:

img

Уравнение (7) возможно проинтегрировать дальше, записав его как

img

С учетом этого выражения находится зависимость x от времени t в виде:

img

Если сюда подставить выражение (8), то определится время до остановки.

Рассмотрим следующий вариант задачи.

Пусть сопротивление R зависит от x как

img

где a, b – неизвестные априори константы. В этом случае вместо (8) получаем

img

Интегралом этого уравнения при граничных условиях (4) служит выражение

img
(9)

Подкоренное выражение здесь должно быть неотрицательным, максимальная глубина погружения определяется из уравнения

img
(10)

Для определения зависимости img требуется проинтегрировать (9). Имеем дифференциальное уравнение

img
(11)

Его интегралом служит выражение

img
(12)

где константа С выражается формулой 

img
(13)

Если известна глубина проникновения x, то на основе (12), (13) вычисляется время проникновения. При известных значениях x и t формулы (10) и (12), (13) служат для восстановления неизвестных параметров сопротивления a и b.

Рассмотрим теперь более усложненный вариант сопротивления среды в виде

img
(14)

В этом случае по-прежнему имеем уравнение движения (1) как

img

Умножив здесь на img и интегрируя, получим

img

из которого находим

img
(15)

При нулевой скорости img отсюда получаем максимальную глубину погружения xmax, решая уравнение

img
(16)

Из (15) следует, что вещественная скорость существует, если величина

img

будет меньше 1, то есть img.

Минимальное значение img в силу (15) должно быть равно нулю.

Поэтому имеем 

img
(17)

Рассмотрим теперь уравнение для определения зависимости img

img
(18)

Раскладывая величину img в ряд по степеням img, получаем [25]:

img

или

img

При этом величина img должна для абсолютной сходимости ряда удовлетворять условию img В силу (17) оно заведомо выполнено. Отсюда находим подынтегральную функцию

(18) в виде:

img

img

img

img

img
(19)

Формула (19) определяет время проникания жесткого инструмента на глубину x.

Возникает вопрос: как воспользоваться полученными результатами (16), (19), (15)? В эти выражения входят неизвестные параметры a, b, c. Как их найти? Экспериментально устанавливается глубина полного погружения инструмента за один удар, т.е. вместо (16) получаем одно из уравнений для определения констант a, b, c:

img
(20)

Выражение (19) (в предположении, что слагаемыми со степенями img выше 1-ой можно  пренебречь) дает второе уравнение для определения a, b, c при известных x, t:

img
(21)

Чтобы получить третье уравнение, достаточно зафиксировать скорость инструмента в промежуточном положении при img, обозначив при этом скорость движения хвостовика инструмента как img. В этом случае имеем дополнительное уравнение: 

img
(22)

В итоге получаем три уравнения для нахождения 3-х параметров a, b, c.

Повторив аналогичные действия для другого инструмента, можно сравнить сопротивление среды в обоих случаях.

3. Заключение

В работе дана методика определения сопротивления среды внедрению в нее жесткого инструмента путем многократного применения энергетического тождества. Показано, что в результате применения этой методики в процесс вычислений включаются все начальные условия задачи так, что итоговый интеграл вычисляется лишь путем разложения подынтегральной функции в сходящиеся ряды. Коэффициенты разложения функции сопротивления среды вычисляются с помощью данных о начальном состоянии положении инструмента в момент остановки и дополнительно в промежуточных точках.

При известной функции сопротивления среды внедрению положение пробойника для любого изменения активной силы, действующей на него, определяется на основе интегрирования уравнения движения.

Показано, что эффективность действия разрушающего инструмента оценивается энергией, направленной на преодоление сопротивления среды внедрению. Чем меньше затрачиваемая энергия, тем эффективнее действие инструмента. Данный принцип может служить критерием выбора разрушающего инструмента при одних и тех же начальных условиях.

Выводы

1. Для оценки сопротивления среды при внедрении в нее жесткого инструмента предлагается путь, основанный на применении энергетического тождества.

2. В случае сложной зависимости сопротивления среды от глубины проникновения возможно применение разложения абсолютно сходящихся рядов и последующего их интегрирования.

Метрика статьи

Просмотров:182
Скачиваний:1
Просмотры
Всего:
Просмотров:182