ВЛИЯНИЕ ОРГАНИЧЕСКИХ УДОБРЕНИЙ НА ОСНОВЕ ТОРФА НА ПРОДУКТИВНОСТЬ КУЛЬТУР ЗЕРНОПРОПАШНОГО СЕВООБОРОТА
ВЛИЯНИЕ ОРГАНИЧЕСКИХ УДОБРЕНИЙ НА ОСНОВЕ ТОРФА НА ПРОДУКТИВНОСТЬ КУЛЬТУР ЗЕРНОПРОПАШНОГО СЕВООБОРОТА
Научная статья
ORCID:0000-0003-1654-7783,
Всероссийский НИИ органических удобрений и торфа Верхневолжский ФАНЦ, Вяткино, Россия
* Корреспондирующий автор (anistan2009[at]mail.ru)
АннотацияПрименение торфа как компонента для приготовления компостов – важный фактор повышения продуктивности агроэкосистем. Нами, в течение двух ротаций 4-х польного севооборота «картофель – ячмень – однолетние травы – озимая пшеница», изучено влияние низинного торфа, торфопометного компоста и подстилочного навоза, их совместного применения с минеральными удобрениями на продуктивность культур полевого севооборота. В среднем за две ротации наибольшая урожайность отмечена в вариантах с подстилочным навозом и торфопометным компостом – 10,75-12,13 т/га з.е. при 8.03 т/га з.е. в контроле, без удобрений. Применение N80PK способствовало повышению относительной урожайности примерно на 20%, торфопометного компоста и подстилочного навоза – на 33-35%. Внесение 1 т торфопометного компоста было наиболее выгодно и обеспечило получение 148 кг з.е., что в 7,18 раз больше, чем при внесении низинного торфа в чистом виде. Именно поэтому торф выгоднее использовать в виде компостов, особенно в составе торфопомётного компоста.
Ключевые слова: торф, торфопометный компост, минеральные удобрения, дерново-подзолистая почва, продуктивность севооборота.
RESPONSES OF THE PRODUCTIVITY OF GRAIN-CROPS CROP ROTATION TO ORGANIC FERTILIZERS BASED ON PEAT
Research article
Anisimova T. Yu. *
ORCID:0000-0003-1654-7783,
All-Russian Research Institute of Organic Fertilizers and Peat Upper Volga Federal Agrarian Research Centre»,
Vyatkino, Russia
* Corresponding author (anistan2009[at]mail.ru)
AbstractThe use of peat as a component for preparation of compost is an important factor for improving the productivity of agroecosystems. Us, for two rotations of fourfold rotation "potato – barley – annual grasses – winter wheat", the influence of lowland peat corporatelogo compost and manure litter, their combined application with mineral fertilizers on productivity of crop rotation. The average for the two rotation the highest yields observed in variants with litter with manure and compost morphometry – 10.75-12.13 t ha -1 of grain units (g.u.) in 8.03 g.u. (t ha -1) in the control, without fertilizer. Independently from the organic fertilizers, aplication N80PK increased the relative crop yield by approximately 20% in composted peat-poultry manure and 33-35% in manure of cattle, peat for almost all the crops. Introduction 1 t peat-poultry compost was the most beneficial and deliver 148 kg z.e. what 7.18 times more than when you make lowland peat in the pure form.
Key words: peat, peat-poultry compost, fertilizer, sod-podzolic soil, productivity of crop rotation.
IntroductionThe most important role in improving soil fertility, increasing crop yields and improving quality, belongs to organic fertilizers, including on the basis of peat [7], [8], [9].
Peat refers to renewable natural resources and is of great importance in solving the problem of preservation and improvement of soil fertility [1], [6].
In Russia, marshes and wetlands with the presence of peat is 21% of the territory. Resources of peat posted by 57.4 thousand fields with a total area of 50.8 million hectares and are estimated at 180 billion tons or more [3].
The use of organic fertilizers is one of the most powerful factors for increasing soil fertility by improving physical, chemical and biological properties of the soil [2].
In Russia in long-term field experiments mainly examined the effectiveness of litter manure [8]. In this work, the aim is to study the effectiveness of fertilizers based on peat, and their influence on physico-chemical properties of soil, microbiological activity and crop yield when using spatial-temporal analysis.
Methods
The study was carried out in the experimental field (Sudogda raion, Vladimir oblast, Russia) in the period 2009-2016 for two fourfold rotations grain crop rotation. Crop rotation: potatoes– barley– annual grasses (vetch-oat mixture) – winter wheat. Soil - sod-podzolic sandy loam soil, formed on red-brown loam covering the moraine (according to IUSS Working Group WRB – Umbric Albelubisoils). The average annual temperature in Sudogodsky area of Vladimir region is equal to 3.9оС. The sum of biologically active temperatures - 2000- 2100оС. Annual rainfall – 560-590 mm. In most years of research, the meteorological conditions were close to mean multiyear observations.
Used the following types of organic fertilizer (fertilization practices – FP): cattle manure straw (CM), peat fen (P), peat-poultry compost (PPC). Organic fertilizer made for plowing under potatoes once in four years in the first and second crop rotation in the next 8 years. Dose of organic fertilizer was equivalent to the amount of nitrogen applied with cattle manure – 200 kg N ha -1, accepted experience standard. With regard to the content of nitrogen, the average doses of organic fertilizers when making potato was (t ha -1): CM – 52.6, P – 58.7, PPC– 27.5. In the experiment studied their effect (in the year of application on potatoes) and the aftereffect (1st – 3rd years after making on barley, vetch-oat mixture and winter wheat) both in pure form and in combination with mineral fertilizers.
The doses of mineral fertilizers depended on the content of total phosphorus and potassium in organic fertilizers. The doses were not higher 280 kg N ha -1 (N280), 200 kg P ha -1 (P200), 320 kg K ha -1 (K320) for the rotation of crop. Ammonium nitrate (NH4NO3), triple superphosphate [Ca(H2PO4)2•H2O] and salt of potash (KCl) were applied prior to planting for the summer crops (potatoes, barley, vetch-oat mixture) and during the resumption of the spring growing season period for winter wheat . Herbicides and fungicides were applied depending on weed pressure, and standard phytosanitary protection was applied according to integrated crop protection principles [4].
Accommodation options in experience systematic. The repeated three-times square plot 48 m2 (6 x 8).
The study was performed according to the following scheme: (1) control - without fertilizer (WF), (2) cattle manure straw (CM), (3) peat fen (P), (4) peat-poultry compost (PPC), (5) CM + N80PK, (6) P + N80PK, (7) PPC + N80PK.
To estimate total productivity of crop rotation of potato – barley – annual grasses – winter wheat, crop yields were translated in grain units. This used the following conversion factors: for winter wheat, barley – 1.0, potatoes – 0.25, annual grasses – 0.14. Increase of productivity of various types of fertilizers designed to AB-absolute control (without fertilizers).
Statistical analysis was performed using the program STATVIUA.EXE. Significant differences between the options criterion LSD, using ONE-WAY ANOVA of varians, the differences between the options were considered significant at p < 0.05. Agronomic profitability of fertilizers (payment) was defined as the yield increase to the control (kg ha -1 of grain unit) from 1 kg NPK, made with fertilizer [5].
Results
The relative yields of different crops (t ha -1 of grain units) during the entire experimental period are reported in Table 1. Independently from the FP, aplication N80PK increased the relative crop yield by approximately 20% in PPC and 33-35% in CM, P for almost all the crops (p < 0.001). The lowest yield of grain units on average for 2 rotations was observed in the control (without fertilizers) – 8.03 t ha -1. Among fertilizers, the lowest relative yield was observed in the use of lowland peat in the pure form. Maximum productivity the thrust of the rotation is obtained by introducing litter manure and peat-poultry compost together with N80PK – 14.32-14.60 t ha -1 of grain units.
Table 1 – Average yield per crop type for 2 rotations, t ha -1 of grain units
Crop FP: NPK: | WFa | CMb | Pc | PPCd | LSD05 | |||
0 | 0 | NPK | 0 | NPK | 0 | NPK | ||
Potatoes | 3.24 | 4.65 | 6.50 | 4.19 | 5.20 | 5.50 | 6.48 | 0.74 |
Barley | 0.84 | 1.58 | 2.22 | 1.00 | 1.76 | 1.68 | 2.25 | 0.44 |
Vetch-oat mixture | 1.76 | 1.90 | 2.36 | 1.84 | 2.41 | 2.21 | 2.61 | 0.40 |
Winter wheat | 2.19 | 2.62 | 3.24 | 2.22 | 3.16 | 2.74 | 3.26 | 0.36 |
Crop yields: (on average for 2 rotations) | 8.03 | 10.75 | 14.32 | 9.25 | 12.53 | 12.13 | 14.60 | 1.91 |
(average for the year) | 2.01 | 2.69 | 3.58 | 2.31 | 3.13 | 3.03 | 3.65 | 0.49 |
LSD of p-value<0.01;
aControl - without fertilizer (WF);
bManure of cattle (CM);
cPeat (P);
dComposted peat-poultry manure (PPC).
Among the used types of fertilizers most long action had peat-poultry compost. The results showed that the average for the two crop rotation using organic fertilizer without chemical fertilizers additionally obtained from 1.21 to 4.07 t ha -1 of grain units, which accounted for 0.3-1.02 t ha -1 of grain units per year. In combination with mineral fertilizers, the level of increase was much higher from 4.47 6.77 t ha -1 of grain units or 1.12-1.69 t ha -1 of grain units per year (tab. 2). The total content of NPK was increased to the optimal level, average annual nutrient management in grain crop rotation has made N70P21.8K66.4.
The payback of 1 kg of nutrients due to application of organic fertilizers in pure form on average over the two rotations amounted to 4.65 (P)-11.92 (PPC) kg of grain units. In combination with mineral fertilizers, this figure had risen to 7.11(P+N80PK) -10.38 (PPC+N80PK) kg of grain units. The largest payment of 1 kg of NPK, introduced with fertiliser is noted in the variant with peat-poultry compost in pure form or on the background of NPK: and built and 11.92 10.38 kg of grain units (kg g.u.).
Payment 1 ton of peat (kg of g. u. ) was 2 times lower compared to litter manure (43 kg g.u.). Introduction 1 t peat-poultry compost was the most beneficial and deliver 148 kg g.u.). Therefore, the peat is more profitable to use in the form of compost, particularly in peat-poultry compost.
Conclusions
Application of organic fertilizers based on peat in grain crop rotation on sod-podzolic sandy loam soil contributed to the increase of productivity of grain crops of a crop rotation. The greatest increase in total productivity of crop rotation on average over the two rotations in the application of organic fertilizer made in equal doses of nitrogen, observed in the variant with peat-poultry compost and amounted to 12.13 t kg of grain units, at 8.03 kg of grain units in control. On the background of mineral fertilizers in all variants of experience on the productivity of plants was higher compared to the organic system of fertilizers on the average of 12-35%.
Конфликт интересов Не указан. | Conflict of Interest None declared. |
Список литературы / References
- Berglund Ö. Distribution and cultivation intensity of agricultural peat and gyttja soils in Sweden and estimation of greenhouse gas emissions from cultivated peat soils / Berglund Ö., Berglund K.,. Geoderma 154, 2010, 173-180. doi.org/10.1016/j.geoderma.2008.11.035.
- Birkhofer K. Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol / Birkhofer, , Bezemer, T.M., Bloem, J. and others Biochem. 40, 2008, 2297–2308. doi:http://dx.doi.org/10.1016/j.soilbio.2008.05.007 (Special Section: Enzymes in the Environment Enzymes in the Environment III).
- Es’kov, A.I., . Rezultaty i perspektivy issledovaniy po ispolzovzniyu torfa v zemledelii [Results and prospects of research on the use of peat in agriculture] / A.I. Es’kov, T.Y Anisimova., M.N. Novikov. J. Vladimir farmer.-2010.- № 3, - 8-10.[in Russian]
- Häni F. Protection des plantes en production intégrée / Häni F., Popow, G., Reinhard, H. and others, 1990. LmZ Centrale des moyens d’enseignement agricole.
- Kiryushin, B.D. Osnovy nauchnyh issledovaniy v agronomii [Basic research in agronomy] / B.D.Kiryushin, R.R. Usmanov, I.P.Vasiliev. - Moscow: Colossus.- - 398 p. [in Russian]
- Knieß A. Prediction of long-term changes in ecosystem functions of a peatland site with the semi-quantitative decision support system PMDSS/ Knieß A., Holsten B., Kluge W., 2010, Geoderma 154, 233-241. doi.org/10.1016/j.geoderma.2009.08.019 .
- Maltas, A. Effect of organic fertilizers and reduced-tillage on soil properties, crop nitrogen response and crop yield: results of a 12-year experiment in Changins, Soil Tillage Res / Maltas, A., Charles, R., Jeangros, B. and others, 2013, 126, 11–18. doi:http://dx.doi.org/10.1016/j.still.2012.07.012.
- Merzlaya, G. E. Effectivnost dlitelnogo primeneniya organicheskih i mineralnyh udobreniy na dernovo-podzolistoy legkosuglinistoy pochve [Efficiency of long-term application of organic and mineral fertilizers on sandy loamy soddy-podzolic soil] / G. E. Merzlaya, G.A. Zyabkina, T.P.Fomkina, A.V.Kozlova, O.V.Makshakova, S.P. Voloshin, O.M.Khromova, I.V.Pankratenkova // J/Agrochemistry. - 2012. - № 2 – P. 37-46. [in Russian]
- Rasmussen, E. Long-Term agroecosystem experiments: assessing agricultural sustainability and global change / Rasmussen, P.E., Goulding, K.W.T., Brown, J.R. and others, 1998, Science 282, 893–896. doi:http://dx.doi.org/10.1126/science.282.5390.893.