КОМБИНАТОРНОЕ ЗНАЧЕНИЕ ЧИСЛА ЭЙЛЕРА

Научная статья
DOI:
https://doi.org/10.23670/IRJ.2019.86.8.020
Выпуск: № 8 (86), 2019
Опубликована:
2019/08/19
PDF

КОМБИНАТОРНОЕ ЗНАЧЕНИЕ ЧИСЛА ЭЙЛЕРА

Научная статья

Перфилеев М.С. *

ORCID: 0000-0002-9776-3666,

Восточно-Сибирский филиал ФГУП «ВНИИФТРИ», Иркутск, Россия

* Корреспондирующий автор (perfmihserg18011985[at]mail.ru)

Аннотация

В настоящей статье рассматривается новый предел числа e и приводится его научное доказательство с помощью аппарата математического анализа. Используя этот предел, мы проводим комбинаторную интерпретацию числа Эйлера. Это означает, что число Эйлера является отношением количества перестановок (или комбинаций) 04-09-2019 10-48-27 на n  к числу перестановок (или комбинаций) 04-09-2019 10-48-35  на n с бесконечно большим числом элементов n.

Ключевые слова: число Эйлера, предел функции, формула Стирлинга, число перестановок, количество комбинаций.

COMBINATORIAL MEANING OF EULER'S NUMBER

Research article

Perfileev M.S. *

ORCID: 0000-0002-9776-3666,

East-Siberian branch of FSUE «VNIIFTRI», Irkutsk, Russia

* Corresponding author (perfmihserg18011985[at]mail.ru)

Abstract

In this paper, we consider a new limit for the number e and give its rigorous proof using the apparatus of mathematical analysis. With the help of this limit, a combinatorial interpretation is given for Euler's number. It means that Euler's number is the ratio of the number of permutations (or combinations) of 04-09-2019 10-48-27  by n to the number of permutations (or combinations) of 04-09-2019 10-48-35 by n with an infinitely large number of elements n.

Keywords: Euler's number, limit of a function, Stirling's formula, number of permutations, number of combinations.

Introduction

The number e is one of the most important mathematical constants [1], and it plays a huge role in differential and integral calculus, in algebra and the laws of physics and chemistry. Euler's number has various representations, for example, sums of infinite series, limits, infinite multiplications, and infinite continued fractions [2], [3].

Let's consider the limit

04-09-2019 11-03-22   (1)

where  p, q, and  r  are real numbers, and  p  is more than zero: 04-09-2019 11-05-26 Proof: Let's replace n with 04-09-2019 11-05-49 04-09-2019 11-07-50 We denote that  04-09-2019 11-09-28. Then we get the limit 04-09-2019 11-10-25   (2) Provided  04-09-2019 11-12-06 (using Stirling's formula 04-09-2019 11-11-47 provided 04-09-2019 11-11-55  [5]) we get 04-09-2019 11-14-01 04-09-2019 11-15-13

(Note: during the transformations, we used the negligible smallness of 04-09-2019 11-16-48 compared to n provided 04-09-2019 11-16-57 and the second remarkable limit 04-09-2019 11-17-22  [6]).

Similarly, we can get

04-09-2019 11-20-19

Then 04-09-2019 11-21-07

Q.E.D.

(Note: during the transformations, we used the negligible smallness of 04-09-2019 11-22-13 compared to 04-09-2019 10-48-35 provided 04-09-2019 11-12-06 and the second remarkable limit).

Combinatorial meaning of Euler's number

Let's consider some properties of the obtained limit (1).

If we take p = 1, and  04-09-2019 11-22-42 (Theodorus' constant), and  04-09-2019 11-22-51 (Pythagoras' constant) [1], then we get the limit

04-09-2019 11-24-47   (3)

Provided   p = 1, q = 1, r = 0, the limit (1) takes the form of 04-09-2019 11-25-00   (4) Replacing n with 04-09-2019 11-25-37 we get the expression 04-09-2019 11-28-09   (5)

Using highly accurate computer calculations for the expression (5), we can get the following results, presented in this format:

{numeric value n ; deviation of calculated results from the exact value of the number e}:

04-09-2019 11-29-21

It is easy to see that as n increases by one order of magnitude, the accuracy of the approximation increases by two orders of magnitude.

Using the formula for the number of permutations of k  elements of m elements,

04-09-2019 11-29-29   [7] can be trivially obtained

04-09-2019 11-30-37   (6)

then Euler's number can be represented as 04-09-2019 11-30-48   (7)

Thus, Euler's number also has a combinatorial meaning, which is the ratio of the number of permutations of n elements from 04-09-2019 10-48-27 elements to the number of permutations of n elements from 04-09-2019 10-48-35  elements with an infinitely large number of elements n.

Also, Euler's number can be interpreted as the ratio of the number of combinations of n elements from 04-09-2019 10-48-27 elements to the number of combinations of n elements from 04-09-2019 10-48-35 elements with an infinitely large number of elements n.

Indeed, using the formula for the number of combinations

04-09-2019 11-36-00

we can obtain 04-09-2019 11-36-07   (8) Then we get the result 04-09-2019 11-37-51   (9) If in the limit (5) we replace n with  04-09-2019 11-40-08, we get 04-09-2019 11-41-01   (10)

(Note: during the transformations, we used the negligible smallness of compared to 04-09-2019 10-42-01  provided 04-09-2019 11-12-06). 

Conclusion

Thus, this paper presents and proves a new limit for Euler's number. The properties of this limit have also been considered here. Using the formulas for the number of permutations and combinations of m through k, it is shown that the number e has its combinatorial meaning.

Конфликт интересов Не указан. Conflict of Interest None declared.

 

Список литературы / References

  1. Булыко А.Н. Современный словарь иностранных слов / Булыко А.Н. – М.: Мартин, 2005. – С. 215
  2. Steven R. Finch. Mathematical Constants / Steven R. Cambridge, 2003.- P. 12-16.
  3. Representations of e [Electronic resourse]. URL: https://www.wolframalpha.com/input/?i=Representations+of+e (accessed: 18.07.2019)
  4. Wolfram MathWorld [Electronic resourse]. URL: http://mathworld.wolfram.com/e.html (accessed: 18.07.2019)
  5. Colloquium-journal, Warszawa, Poland, №4 (28), Michael Perfileev "The quotient of the number pi and the number e".- P. 60-62.
  6. David H. Bailey Pi: The Next Generation: A Sourcebook on the Recent History of Pi and Its Computation / David H. Bailey, Jonathan M. Borwein.-Springer, 2016.- 389 p.
  7. Taktarov N.G. Handbook of higher mathematics for students / Taktarov N.G. Moscow, Librocom, 2008.- 149 p.
  8. Novikov F.A. Discrete mathematics for programmers / Novikov F.A. St. Petersburg, Piter, 2009.- P. 181-182.
  9. Erosh I.L. Discrete Math. Combinatorics: Tutorial / Erosh I.L. St. Petersburg, SPbGUAP, 2001.-11 p.