ИССЛЕДОВАНИЕ РЕЖИМА ТЕМПЕРАТУРЫ АТМОСФЕРНОГО ВОЗДУХА С ПОМОЩЬЮ МОДЕЛИ АВТОРЕГРЕССИИ-СКОЛЬЗЯЩЕГО СРЕДНЕГО

Научная статья
DOI:
https://doi.org/10.23670/IRJ.2023.134.94
Выпуск: № 8 (134), 2023
Предложена:
20.06.2023
Принята:
04.07.2023
Опубликована:
17.08.2023
704
7
XML
PDF

Аннотация

Предложена модель авторегрессии-скользящего среднего для прогнозирования значений метеорологических параметров атмосферы, в частности температуры атмосферного воздуха за осенний период г. Нальчика Юга России. Показано, что предлагаемая модель позволяет прогнозировать значения средних осенних температур воздуха с высокой точностью (6%). Во временном ряду средних осенних температур воздуха прослеживается цикл, характерный 11-летнему циклу солнечной активности. Все критерии качества модели удовлетворяют требованиям, предъявляемым к качеству и адекватности моделей прогноза. Предложенная модель может быть применена к анализу и прогнозированию средних температур воздуха за весенний, летний и зимний сезоны.

1. Введение

Временная трансформация осредненных значений температуры атмосферного воздуха (годовые, осенние, зимние, весенние и летние) носит сложный характер и является одной из ключевых позиции не только потребностей климатологии, но и нужд народного хозяйства. Такие метеопараметры используются для принятия научно обоснованных решений по адаптацию сельскохозяйственных культур к изменяющимся природно-климатическим условиям. Несмотря на широкое применение временных рядов для анализа и прогнозирования различных метеорологических параметров атмосферы

,
,
, еще недостаточно изучена природа временных рядов выше отмеченных осредненных значений температуры воздуха.

Этим определяется актуальность детального анализа и прогнозирования временных рядов температуры атмосферного воздуха.

Целью работы является анализ и прогнозирование значений временных рядов метеорологических параметров. Для достижения которой поставлены следующие задачи:

- анализ временного ряда динамики значений средних температур воздуха за осенний период;

- выбор модели прогнозирования будущих значений временного ряда на ретроспективном участке;

- оценка качества модели с помощью показателей и критериев точности.

Материалом данного исследования являются значения средних температур атмосферного воздуха за осенний период, характерных для г. Нальчика Юга России.

Исследование проводится с помощью модели ARIMA, реализованной в пакете статистических программ SPSS

.

2. Методы и методы исследования

Обычно для понимания изменения климата прогнозируется динамика климатических параметров. Что касается температурного режима, то это значения средних сезонных и годовых температур, а также экстремально высоких и низких температур воздуха. Материалом данного исследования являются многолетние значения температур, осредненные за три осенних месяца (сентябрь, октябрь и ноябрь). Выбор этих параметров оправдан их применением в климатологии, особенно строительной, а также в сельском хозяйстве.

Объектом данного исследования является температурный режим г. Нальчика, расположенного в предгорной зоне Юга России. Средние показатели температуры воздуха в этом городе колеблются от +25…+28 °C в июле, до −3…−5 °С − в январе. Среднегодовая температура воздуха составляет 9,6 °С. Самая высокая температура воздуха наблюдается в конце июля, а наиболее низкая в конце января или в начале февраля. Возможны оттепели зимой до +15 °С и выше. Характерной особенностью климата города Нальчика являются значительные суточные колебания температуры, связанные с горно-долинным ветром.

Многолетние значения средних температур воздуха за осенний период по метеостанции г. Нальчика с 1961 по 2022 гг. были предоставлены Северо-Кавказским управлением по гидрометеорологии и мониторингу окружающей среды.

В ходе исследования временной ряд температуры атмосферного воздуха разбивается на две части: 1961-2016 гг. и 2017-2022 гг. Анализ ряда проводится для первой части, а для второй прогнозируются значения средних температур воздуха и сравниваются с фактическими значениями ряда (ретропрогнозирование).

Для данного исследования применяется одна из наиболее распространенных статистических моделей, получившая название модели Бокса-Дженкинса

.

Согласно методологии Бокса-Дженкинса модель img состоит из трех частей

,
: img  модель авторегрессии порядка img, img  скользящей средней порядка img и img  интегрированная часть порядка img (порядок последовательных разностей для преобразования временного ряда в стационарный).

Модель img в общем случае имеет вид:

img
(1)

где img константа модели;

img коэффициенты авторегрессии;

img коэффициенты скользящего среднего;

img случайная ошибка или «белый шум».

Моделирование временного ряда при помощи img включает в себя следующие этапы: подготовка данных, выбор и идентификация модели (определение параметров img, img и img), оценка качества модели с помощью показателей и критериев точности и прогнозирование временного ряда на ретроспективном участке

,
.

3. Результаты исследования и обсуждение

Предварительное рассмотрение значений временного ряда показало отсутствие пропущенных значений и выбросов (данные наблюдений аномально далекие от других значений временного ряда). Далее временной ряд исследуется на стационарность. Динамика изменений средних температур воздуха (рис. 1а), свидетельствует о наличии тренда, причем имеет место его увеличение с течением времени, т.е. исходный временной ряд является нестационарным.

Динамика изменения значений средних температур воздуха с нанесенным трендом

Рисунок 1 - Динамика изменения значений средних температур воздуха с нанесенным трендом

Примечание: а) исходный ряд; б) стационарный

Процедура взятия разности первого порядка img преобразовала исследуемый ряд в стационарный img (рис. 1б), в результате появилась постоянная средняя, вокруг которой колеблются значения ряда.

Далее проводилась оценка параметров img и img модели по автокорреляционной и частной автокорреляционной функциям (рис. 2).

Автокорреляционная ACF (а) и частная автокорреляционная PACF (б) функции

Рисунок 2 - Автокорреляционная ACF (а) и частная автокорреляционная PACF (б) функции

Порядок скользящей средней img определялся как число значимых лагов автокорреляционной функции ACF (рис. 2а). Наиболее высоким оказался коэффициент автокорреляции первого порядка img. Порядок модели авторегрессии img выбирался по графику PACF (рис. 2б), на котором выделяется лаг 2, как последний ненулевой элемент, т.е. имеем модели img и img. Выбор пал на модели-кандидаты img и img с константами и без.

Значения ACF демонстрируют медленное затухание и наличие во временном ряду средних температур воздуха периодической составляющей. Величина периода колебания равна величине лага, при котором коэффициент корреляции выделяется. В данном случае это 9 лаг, но с учетом взятия разности первого порядка мы имеем 10-летний цикл. Не подлежит сомнению, что это – результат проявления 11-летнего цикла солнечной активности

.

Отбор наилучшей из этих моделей проводился по:

- информационному критерию BIC;

- тесту Льюнга–Бокса на отсутствие автокорреляции в остатках;

- тесту Колмогорова-Смирнова на нормальность распределения остатков.

Нормализованный байесовский информационный критерий BIC

, рассчитываемый в программе SPSS, предназначен для работы с выборками больших размеров. В случае небольших выборок рассчитывается вероятность того, что рассматриваемая модель сведет к минимуму потерю информации:

img
(2)

где img  самый низкий показатель BIC;

img показателей моделей-кандидатов.

Из двух моделей предпочтение отдается модели с меньшим значением img.

Значения вероятностей для всех моделей-кандидатов, оказались равными img.

Уровни значимости теста Льюинга-Бокса оказались очень высокие (img) для всех моделей-претендентов (табл. 1), следовательно, можно принять нулевую гипотезу об отсутствии автокорреляции в остатках по всем моделям.

Отклонение остатков от нормального распределения считается существенным, если уровень значимости теста Колмогорова-Смирнова принимает значение img. В рассматриваемом случае img, т.е. остатки не отклоняются от нормального распределения.

Это свидетельствует о том, что все модели-кандидаты равнозначны.

Самыми популярными критериями выбора модели являются средняя абсолютная ошибка MAPE, характеризующая точность прогноза и коэффициент детерминации img, показывающий доля дисперсии объясняемую моделью.

Анализ значений MAPE и img отменил модели img с константой и без (табл. 1).

Таблица 1 - Критерии оценки моделей ARIMA(p, d, q)

Модель

Тест Льюинга-Бокса

MAPE

img

Статистика

Количество степеней свободы

p-уровень значимости

1

2

3

4

5

6

ARIMA(1,1,1)

с константой

7,77

16 

0,96

9,56

0,45

без

8,51

0,93

9,61

0,44

ARIMA(2,1,1)

с константой

7,56

15

0,94

9,37

0,46

без

7,89

0,93

9,36

0,45

Таким образом, на этапе идентификации остались две модели-кандидаты img с константой и без константы.

Дальнейший выбор адекватной модели основывался на прогнозировании значений временного ряда на ретроспективном участке с 2017 по 2022 гг. (рис. 3). На рисунке 3 приведены фактические значения средних осенних температур воздуха и их прогнозные значения.

Динамика значений средних осенних температур воздуха

Рисунок 3 - Динамика значений средних осенних температур воздуха

Примечание: исходный ряд (сплошная кривая), аппроксимированный ряд (штриховая кривая) и прогнозные значения с 2017 по 2022 гг. (штрихпунктирная)

Были рассчитаны абсолютные ошибки модели прогноза на ретроспективном участке MAPE (табл. 2) по фактическим и прогностическим значениям исследуемого ряда.

Таблица 2 - Результаты прогнозирования средних температур атмосферного воздуха на ретроспективном участке 2017-2022 гг. по модели ARIMA(2,1,1)

Дата

Фактические значения

Прогностические значения по модели

Абсолютные ошибки модели

с константой

без

с константой

без

1

2

3

4

5

6

2017

10,43

10,91

10,74

4,60

2,97

2018

11,63

11,18

11,02

3,90

5,27

2019

10,90

10,98

10,82

0,73

0,73

2020

12,67

10,98

10,79

13,32

14,82

2021

10,07

11,03

10,83

9,57

7,58

2022

10,53

11,05

10,83

4,91

2,82

Средняя абсолютная ошибка

6,17

5,70

Модель img без константы оказалась наилучшей, так как средняя абсолютная ошибка прогноза по этой модели оказалась минимальной и равной 5,70; сама процедура взятия первой разности временного ряда также отменяет константу модели.

Из литературы известно, что значение MAPE<10% свидетельствует о высокой точности моделей прогнозов.

4. Заключение

Анализ динамики временного ряда значений средних температур воздуха за осенний период показал наличие периодичности, вызванной 11-летним периодом солнечной активности.

Средняя относительная ошибка прогноза на ретроспективном ряде, равная 6%, свидетельствует о высокой точности предлагаемой модели img.

Анализ эффективности выбранной модели показал, что критерии качества прогнозирования значений средних осенних температур атмосферного воздуха по предлагаемой модели img удовлетворяет всем критериям и требованиям качества и адекватности, предъявляемым к моделям прогнозирования.

Это свидетельствует о том, что такой сложный по своей природе временной ряд, характеризующий температурный режим атмосферного воздуха может прогнозировать по модели Бокса-Дженкинса.

Метрика статьи

Просмотров:704
Скачиваний:7
Просмотры
Всего:
Просмотров:704