Pages Navigation Menu

ISSN 2227-6017 (ONLINE), ISSN 2303-9868 (PRINT), DOI: 10.18454/IRJ.2227-6017
ПИ № ФС 77 - 51217, 16+

Скачать PDF ( ) Страницы: 74-75 Выпуск: №5 (24) Часть 1 () Искать в Google Scholar
Цитировать

Цитировать

Электронная ссылка | Печатная ссылка

Скопируйте отформатированную библиографическую ссылку через буфер обмена или перейдите по одной из ссылок для импорта в Менеджер библиографий.
Кобылкин М. В. ПЕРСПЕКТИВНОЕ НАПРАВЛЕНИЕ ВНЕДРЕНИЯ ТЕПЛОВЫХ НАСОСОВ / М. В. Кобылкин, С. Г. Батухтин, К. А. Кубряков // Международный научно-исследовательский журнал. — 2020. — №5 (24) Часть 1. — С. 74—75. — URL: https://research-journal.org/technical/perspektivnoe-napravlenie-vnedreniya-teplovyx-nasosov/ (дата обращения: 03.06.2020. ).
Кобылкин М. В. ПЕРСПЕКТИВНОЕ НАПРАВЛЕНИЕ ВНЕДРЕНИЯ ТЕПЛОВЫХ НАСОСОВ / М. В. Кобылкин, С. Г. Батухтин, К. А. Кубряков // Международный научно-исследовательский журнал. — 2020. — №5 (24) Часть 1. — С. 74—75.

Импортировать


ПЕРСПЕКТИВНОЕ НАПРАВЛЕНИЕ ВНЕДРЕНИЯ ТЕПЛОВЫХ НАСОСОВ

Кобылкин М.В.1, Батухтин С.Г.2, Кубряков К.А.3

1Аспирант, 2аспирант, 3аспирант, Забайкальский государственный университет

ПЕРСПЕКТИВНОЕ НАПРАВЛЕНИЕ ВНЕДРЕНИЯ ТЕПЛОВЫХ НАСОСОВ

Аннотация

В статье рассмотрена перспектива внедрения тепловых насосов в существующие системы отопления для компенсации нагрузки горячего водоснабжения, представлен краткий анализ существующих технологических решений в этой области, включая разработки российских исследователей.

Ключевые слова: энергосбережение, тепловой насос, горячее водоснабжение.

Kobylkin M. V.1, Batukhtin S.G.2, Kubriakov K.A.3

1Postgraduate student, 2postgraduate student, 3postgraduate student, Transbaikal State University

PROMISING DIRECTION OF THE INTRODUCTION OF HEAT PUMPS

Abstract

This paper presents the prospect of the introduction of heat pumps in existing heating systems for load balancer domestic hot water, and brief analysis of existing technological solutions in this field, including the developments of russian researchers.

Keywords: energy saving, heat pump, domestic hot water.

Теплохладоснабжение при помощи тепловых насосов, по оценкам большинства авторитетных международных организаций, считается наиболее приоритетным направлением в развитии энергосберегающих технологий. К примеру, Европейская ассоциация по тепловым насосам (EHPA) признает тепловые насосы как основную технологию в области использования возобновляемых источников энергии. Кроме того, активному внедрению тепловых насосов способствует Международное Энергетическое Агентство (IEA), которое предусматривает установку 3,5 миллиардов тепловых насосов в коммунальном хозяйстве к 2050 г. Более того, IEA прогнозирует, что к 2050 году более половины систем отопления зданий будут снабжены аккумуляторами тепловой энергии на основе тепловых насосов [1].

Следует также отметить, что технология тепловых насосов имеет долгую историю развития, начиная с пятидесятых годов прошлого века. Эта технология достаточно хорошо освоена зарубежными специалистами  и широко применяется в строительных проектах целого ряда стран Европы, а также в США и Японии. При этом подавляющее большинство проектов представляют собой комплексную систему энергоснабжения здания, с учетом вентиляции, отопления, горячего водоснабжения и рекуперации тепла. Вне всякого сомнения, такие проекты обладают высокой эффективностью по сравнению с классическими способами теплоснабжения, но и осуществляются они в условиях активного стимулирования и поддержки со стороны государства.

В России подобный глобальный переход от действующих систем централизованного теплоснабжения к системам комплексного теплохладоснабжения на основе тепловых насосов в ближайшее время невозможен. Основными причинами, сдерживающими внедрение тепловых насосов в России, являются:

– отсутствие государственного стимулирования,

– низкая заинтересованность потребителей, которая сведена к минимуму из-за высокой стоимости большинства классических зарубежных проектов, которые в настоящее время широко представлены на рынке тепловых насосов.

Частичным решением проблемы заинтересованности потребителей может послужить  внедрение малозатратных технологических решений в существующие системы отопления, которые будут доступны потребителям и позволят как ознакомиться со всеми преимуществами тепловых насосов, так и повысить общую экономичность теплоснабжения.

Перспективным направлением внедрения тепловых насосов, при условии минимальных капитальных затрат, может стать компенсация нагрузки горячего водоснабжения. Как известно, Россия является признанным лидером по масштабам использования централизованных систем теплоснабжения, в которых до 30% всего отпущенного тепла расходуется на подогрев воды, идущей на горячее водоснабжение. При этом использование отечественных мощных сетевых насосов с низким КПД, качество тепловой изоляции, гидравлическая разлаженность теплотрасс, а также использование тупиковых схем горячего водоснабжения, приводит к тому, что треть тепловой энергии, идущей на нужды горячего водоснабжения, затрачивается впустую. В таких условиях покрытие  тепловой нагрузки горячего водоснабжения тепловыми насосами позволит сберечь колоссальное количество энергетических ресурсов уже на начальном этапе внедрения.

При подходе к реализации поставленной цели не имеет смысла рассматривать  традиционные установки, использующие геотермальные тепловые насосы, в связи c их высокой капиталоемкостью [2], а также технологии утилизации сбросного тепла промышленных предприятий и иных искусственных источников, поскольку такие решения являются частными и актуальны только в исключительных случаях. Для решения данной задачи наиболее предпочтительными будут тепловые насосы типа «воздух-вода» и некоторые технологические решения на основе тепловых насосов типа «вода-вода».

В тепловых насосах типа «воздух-вода» источником тепла является атмосферный воздух, тепло которого передается рабочему телу, а затем от рабочего тела передается воде, которая направляется в систему теплоснабжения здания на нужды горячего водоснабжения. Такие разработки отличаются особой компактностью, относительно малой стоимостью, простотой установки и полной независимостью от источников теплоснабжения. Кроме того, на сегодняшний день воздушные тепловые насосы более доступны и занимают порядка 80% потенциала рынка. Однако основным недостатком тепловых насосов типа «воздух-вода» является их невысокая эффективность за счет низкого коэффициента преобразования, который показывает отношение теплопроизводительности к электропотреблению. При температуре воздуха около 0°С, коэффициент преобразования большинства воздушных тепловых насосов падает ниже трех единиц, а при –15°С ниже двух единиц, что принято считать нижним порогом эффективности и работоспособности [3].  Повысить эффективность воздушных тепловых насосов можно путем усложнения термодинамического цикла и, соответственно, тепловой схемы установки [4], но это неблагоприятно сказывается на стоимости самой установки.

Альтернативой воздушным тепловым насосам являются тепловые насосы типа «вода-вода», принцип работы которых аналогичен тепловым насосам типа «воздух-вода», за исключением того, что в качестве источника тепла используют воду. Водяные тепловые насосы имеют значительно более высокий коэффициент преобразования, чем воздушные, но при этом на рынке практически не представлены малозатратные технологии их внедрения. В связи с этим, особенно важно отметить отечественные разработки в этом направлении.

Одна из таких разработок –  тепловой насос с использованием обратных вод теплоцентрали. Как уже становится ясно из названия, в данном технологическом решении в качестве источника тепла используют воду, циркулирующую в обратном трубопроводе системы централизованного теплоснабжения. Такой подход позволяет получить наибольший, среди рассматриваемых аналогов, показатель коэффициента преобразования.  По некоторым данным,  при использовании тепла обратных вод теплоцентралей, коэффициент преобразования теплового насоса может достигать шести-семи единиц [5], что делает его применение особенно выгодным. Такое решение достаточно популярно среди российских исследователей, о чем свидетельствует высокая патентная активность в этой области. Но, несмотря на то, что такие технологии органично вписываются в существующие российские централизованные системы теплоснабжения, они не позволяют полностью  компенсировать тепло, вырабатываемое централизованным источником, на нужды горячего водоснабжения, вследствие зависимости от теплосетей.

В Забайкальском государственном университете также разрабатывается технология, позволяющая объединить достоинства всех вышеизложенных решений. Сезонный способ горячего водоснабжения, предложенный университетом, позволяет получать горячую воду вне зависимости от централизованного источника на протяжении всего неотопительного периода [6]. В качестве источника тепла для теплового насоса типа «вода-вода» используется теплоноситель, циркулирующий в замкнутом контуре системы отопления здания. Способ позволяет получить высокие значения коэффициента преобразования, которые свойственны водяным тепловым насосам, при минимальных затратах на внедрение, которые свойственны воздушным тепловым насосов. При этом способ обеспечивает утилизацию избыточного тепла в летний период, что характерно для зарубежных комплексных проектов теплохладоснабжения. На сегодняшний день способ проходит тестовые испытания и рассматривается возможность всесезонного использования с сохранением основных преимуществ.

В заключении стоит отметить, что внедрение тепловых насосов для компенсации нагрузки горячего водоснабжения позволит с минимальными затратами заложить основу для дальнейшего развития энергосберегающих технологий теплохладоснабжения, и даст стимул отечественным исследователям к развитию данной отрасли.

Работа выполнена при поддержке гранта Президента РФ (МК-1184-214.8).

Литература

  1. Берзан В.П. Аспекты проблемы стимулирования внедрения тепловых насосов / В.П. Берзан, С.Г. Робу, М.Л. Шит // Проблемы региональной энергетики. –2011. –№ 1. –С. 91–94.
  2. Филиппов С.П. Эффективность использования тепловых насосов для теплоснабжения малоэтажной застройки / С.П. Филиппов, М.Д. Дильман, М.С. Ионов // Теплоэнергетика. –2011.  –№ 11. –С. 12–19.
  3. Чемеков В.В. Система теплоснабжения автономного жилого дома на основе теплового насоса и ветроэлектрической установки / В.В. Чемеков, В.В. Харченко // Теплоэнергетика. –2013. –№ 3. –С. 58.
  4. Филиппов С.П. Перспективы применения воздушных тепловых насосов для теплоснабжения жилых зданий в различных климатических условиях / С.П. Филиппов, М.С. Ионов, М.Д. Дильман // Теплоэнергетика. –2012. –№ 11. –С. 11.
  5. Николаев Ю.Е. Определение эффективности тепловых насосов, использующих теплоту обратной сетевой воды ТЭЦ / Ю.Е. Николаев, А.Ю. Бакшеев // Промышленная энергетика. –2007. –№ 9. –С. 14-17.
  6. Батухтин А.Г. Повышение эффективности современных систем теплоснабжения / А.Г. Батухтин, С.А. Иванов, М.В. Кобылкин, А.В. Миткус. // Вестник Забайкальского государственного университета. –2013. –№ 09. С. 112-120.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.