Pages Navigation Menu

ISSN 2227-6017 (ONLINE), ISSN 2303-9868 (PRINT), DOI: 10.18454/IRJ.2227-6017
ПИ № ФС 77 - 51217, 16+

DOI: https://doi.org/10.23670/IRJ.2018.67.106

Скачать PDF ( ) Страницы: 47-51 Выпуск: № 1 (67) Часть 1 () Искать в Google Scholar
Цитировать

Цитировать

Электронная ссылка | Печатная ссылка

Скопируйте отформатированную библиографическую ссылку через буфер обмена или перейдите по одной из ссылок для импорта в Менеджер библиографий.
Гарина С. В. ОЦЕНКИ ОПТИМАЛЬНОСТИ МНОГОКРИТЕРИАЛЬНЫХ РЕШЕНИЙ / С. В. Гарина, М. Б. Никишин // Международный научно-исследовательский журнал. — 2018. — № 1 (67) Часть 1. — С. 47—51. — URL: https://research-journal.org/technical/ocenki-optimalnosti-mnogokriterialnyx-reshenij/ (дата обращения: 20.06.2019. ). doi: 10.23670/IRJ.2018.67.106
Гарина С. В. ОЦЕНКИ ОПТИМАЛЬНОСТИ МНОГОКРИТЕРИАЛЬНЫХ РЕШЕНИЙ / С. В. Гарина, М. Б. Никишин // Международный научно-исследовательский журнал. — 2018. — № 1 (67) Часть 1. — С. 47—51. doi: 10.23670/IRJ.2018.67.106

Импортировать


ОЦЕНКИ ОПТИМАЛЬНОСТИ МНОГОКРИТЕРИАЛЬНЫХ РЕШЕНИЙ

Гарина С.В.1, Никишин М.Б.2

1ORCID: 0000-0002-6153-8977, кандидат технических наук, доцент

2ORCID: 0000-0002-1700-3676, кандидат педагогических наук, доцент

Национальный исследовательский Мордовский государственный университет им. «Н.П. Огарева» г. Саранск

ОЦЕНКИ ОПТИМАЛЬНОСТИ МНОГОКРИТЕРИАЛЬНЫХ РЕШЕНИЙ

Аннотация

Приведены многокритериальные решения для задач оптимизации в строительстве. Предлагается метод поиска оптимальных решений. Данные задачи имеют большую сложность, так как к оптимальным решениям предъявляются требования по нескольким критериям. Требованиями по критериям могут быть затраты средств, времени, материалов, социальные, экологические последствия от реализации решений. Рассматриваются возрастающие и убывающие части целевой функции и дается оценка оптимального решения с помощью коэффициента эффективности. Предлагается рассмотреть приоритеты по каждому критерию. Установлено, что использование приоритетных оптимальных решений по отдельным критериям дает с наименьшими затратами времени определять оптимальные значения переменных.

Ключевые слова: оптимизация, многокритериальные решения, целевая функция.

Garina S.V.1, Nikishin M.B.2

1ORCID: 0000-0002-6153-8977, PhD in Engineering, Associate professor

2ORCID: 0000-0002-1700-3676, PhD in Pedagogy, Associate professor

Ogarev Mordovian State University, Saransk

ESTIMATIONS OF OPTIMALITY OF MULTICRITERIAL SOLUTIONS

Abstract

Multicriteria solutions for optimization of problems in construction are given in the paper, and the method for finding optimal solutions is proposed. These problems are of great complexity, since several criteria are required for the optimal solutions. The requirements for the criteria can be the costs of funds, time, materials, social, environmental consequences from the implementation of decisions. The increasing and decreasing parts of the objective function are considered and the estimation of the optimal solution by means of the efficiency coefficient is given. It is proposed to consider the priorities for each criterion. It is established that the use of priority optimal solutions by separate criteria gives the least possible time to determine optimal values of variables.

Keywords: optimization, multicriteria solutions, objective function.

В поисках оптимального решения могут принимать участие несколько групп лиц, которые предлагают варианты, удовлетворяющие их интересам. Они выбирают критерии, предопределяющие желаемые решения [1, С. 15].

Одних интересует производительность труда, других – продолжительность жизни, третьих – уровень доходов и т. д. Любые критерии можно представить в обобщенном эквиваленте, но это сложно. Многокритериальные целевые функции – это система целевых функций, каждая из которых связана с соответствующим критерием [3, С. 14], [4, С. 61], [5, С. 20]. Если переменные параметры целевых функций одинаковы, а постоянные параметры разные, то единого решения не существует. Исключение – одинаковое соотношение постоянных параметров для всех критериев. Что в большей степени вероятно.

Многокритериальные оптимизационные задачи рассматриваются в теории нечетких множеств [10]. Большинство моделей принятия решений в нечетких условиях используют заданные критерии, ограничения и альтернативы. Эти модели применяют при принятии коллективных и индивидуальных решений, для решения многокритериальных и однокритериальных задач, для многоэтапных и одноэтапных процессов поиска решений, при нечетком математическом программировании и бинарных отношениях альтернатив.

Индивидуальные предпочтения подразделяются на следующие виды решений: групповые, решения малых групп и игровые решения определенного количества лиц.

При принятии групповых решений каждый участник стремится к коллективному оптимальному решению, которое, хотя и в разной степени, удовлетворяет и личные интересы.

Решения малых групп могут удовлетворять частные и общие интересы.

Если необходимо учитывать интересы всех лиц, принимающих решение, то для разрешения конфликтных ситуаций применяют теорию игр.  Любые задачи или ситуации в той или иной форме всегда разрешимы, поскольку отсутствие решения – тоже решение. В этом случае изменяется состав участников – лиц, принимающих решения.

При принятии коллективных решений всегда появляются лидеры и аутсайдеры, интересы которых и будут соответственно удовлетворены. Методики поиска оптимальных решений, отвечающих нескольким критериям, существуют. Так, для транспорта необходимо обеспечить такие критерии, как приемлемая стоимость перевозок, комфорт для пассажиров, эстетичность оформления вокзалов, вагонов, экологическая безопасность и т. д. Каждый из них требует расхода ресурсов.

Методика поиска таких решений основана на компромиссах.  Проиллюстрируем это на примере создания новой техники. В обществе складывается мнение о наиболее важных проблемах, решение которых имеет первостепенное значение. Для авиалайнеров используют экономичные двигатели с малыми выбросами вредных веществ, с ограниченным уровнем шума, надежные навигационные приборы. Учитывая это, их строят кооперативно. Одни поставляют двигатели, другие – приборы и т. д. Стоимость такого лайнера высокая, но, ссылаясь на международные требования к полетам, другие лайнеры не допускаются к эксплуатации на международных линиях. Получено оптимальное решение для параметров авиалайнеров.

Представляет интерес рассмотрение оптимальности решений по социальным (качественным) и экономическим (количественным) критериям. В оптимальных решениях по качественному критерию права каждого человека на жизнь, работу и т. д. равны. По количественному критерию оптимальное решение обеспечивает приоритет пользы для общества, а не для отдельного человека.

Рассмотрим более простую ситуацию. Есть два населенных пункта. Решено открыть магазин для их жителей. Его размещение согласно качественному критерию оптимально, если затраты на его посещение жителями этих пунктов будут одинаковы. По количественному критерию магазин необходимо разместить в том пункте, где больше жителей, так как если он будет в малонаселенном пункте, то затраты времени и средств на его посещение возрастут пропорционально отношению числа жителей этих пунктов.

Такие подходы к решению многокритериальных оптимизационных задач имеют недостатки, но в некоторых случаях дают результаты.

Под компромиссными решениями следует понимать решения, принимаемые различными лицами на основе разных количественных и качественных критериев, учитывающих их интересы.

В корпорациях, кооперативах, фирмах и т. д. при принятии коллективного решения учитывают политические, финансовые, социальные, экологические и другие интересы, которые предопределяют соответствующие критерии для оценки решений. Так, для выпуска продукции используют материалы, конструкции, оборудование, которые производят в корпорации и вне ее. По критерию стоимости нужно приобретать наиболее дешевые товары и услуги, что невыгодно подразделениям корпорации, выпускающим неконкурентную продукцию. Лишенные заказов, они вынуждены покинуть корпорацию, а она в дальнейшем будет иметь дело с поставщиками. Только стоимостным критерием успехи корпораций не измерить. Поэтому они приобретают предприятия для обеспечения всей технологической цепочки. Такие численные критерии, как рабочая сетка, темпы роста, трудозатраты и подобные им, могут быть выражены в рублях. Это допускается сделать для оценки комфортности жилья, качества здоровья, регулирования рождаемости, трудовой активности, прогнозов развития техники и т.п.

Рассмотрим систему целевых функций (критериев) вида

27-02-2018 12-14-59                            (1)

где27-02-2018 12-19-19  – целевые функции для k критериев; 27-02-2018 12-20-06 – параметры.

Для большего количества критериев существуют области, ограничивающие значение любой переменной.

При правильной постановке целей все критерии работают в одном направлении и могут существовать оптимальные значения переменных, удовлетворяющих нескольким критериям. Добиваясь высокой прочности бетона на сжатие, повышаем и другие его свойства.

В многокритериальных задачах каждому критерию соответствуют целевые функции27-02-2018 12-29-16  [2, С. 10-15]. Эти функции имеют свои оптимальные значения:

27-02-2018 12-30-43                                   (2)

Необходимо рассмотреть, как используются функции (2) при определении компромиссного значения переменой 27-02-2018 12-29-54. Функции (2) в этом случае имеют вид:

27-02-2018 12-31-23                                                 (3)

Отклонения в (2) от замены оптимальных значений 27-02-2018 12-32-07 на 27-02-2018 12-32-32 в:

27-02-2018 12-33-19     (4)

Пусть 27-02-2018 12-34-09  – возрастающие и убывающие части для каждого выражения в системе (1) при увеличении .

Оптимальному значению для каждой функции (1) соответствует [6], [7]

27-02-2018 12-34-48                                                                 (5)

Степень отклонения 27-02-2018 12-35-48 от  27-02-2018 12-35-58 оценивается коэффициентом эффективности [8], [9]

27-02-2018 12-37-04                                                             (6)

В оптимальном решении Э=1.

Примеры поиска компромиссных значений 27-02-2018 12-38-00.

Имеем две независимые функции:

27-02-2018 12-38-42

Если  27-02-2018 12-39-31– время строительства в годах, а  27-02-2018 12-39-47– стоимость строительства в млн. рублей. Тогда

27-02-2018 12-40-12                                     (7)

Обобщенная целевая функция запишется

27-02-2018 12-44-21

 27-02-2018 12-44-53потери времени 0,24 месяца;

 27-02-2018 12-45-23потери в 0,23 млн. рублей.

Если считать, что X – это десятки работающих. То для оптимального варианта 27-02-2018 12-46-00 требуются 10 человек, для  27-02-2018 12-46-30 – 20 человек.

Вариант решения необходимо сравнивать с допустимым значением целевой функции (1).

При нахождении оптимальных решений необходимо учитывать приоритеты критериев 27-02-2018 12-47-20. Если приоритеты разные (27-02-2018 12-49-26 и т.д.) , тогда в полученных выражениях нужно заменить 27-02-2018 12-50-12 на 27-02-2018 12-50-19 и  27-02-2018 12-50-26 на 27-02-2018 12-50-36. Значения  27-02-2018 12-50-45 согласуются с заинтересованными сторонами.

Рассмотрим пример двух целевых функций, одна из которых выражает количество квартир, а другая стоимость в млн. рублей.

27-02-2018 12-52-50

Если рассматривать критерии с учетом приоритетов 27-02-2018 12-53-32.

27-02-2018 12-54-36

Суммарная функция

27-02-2018 12-55-43

В общем случае используют приоритетные оптимальные решения по отдельным критериям. Когда наборы частных решений стохастические (нерегулярные), эффективны компромиссные решения для отдельных блоков задачи.

Список литературы / References

  1. Гарина С.В. Математическое моделирование процесса построения оценок оптимальности строительных конструкций: дис. … канд. тех. наук : 05.13.18 : защищена 30.11.05 : утв. 10.03.06 / Гарина Светлана Владимировна. – Саранск: МГУ «им. Н.П. Огарева», 2005. – 117 с.
  2. Гарина С. В. Оптимизация многокритериальных решений. / С. В. Гарина, Б. М. Люпаев, М.Б. Никишин // Вестник Мордовского университета, 2015. – № 4. – С. 10-15.
  3. Гарина С.В. Оптимальные решения многокритериальных задач. //Сборник статей Международной научно -практической конференции «Информация как двигатель научного прогресса». Т.2 – Уфа: АЭТЕРНА, 2017. – С. 13- 16.
  4. Гарина С.В. Компьютерное моделирование и оценка оптимальности технических решений/ С. В. Гарина, М. Б. Никишин // Сборник статей Международной научно -практической конференции. Т.3 – Уфа: АЭТЕРНА, 2017. – С. 60- 62.
  5. Гарина С.В. Многокритериальные решения в задачах оптимизации строительных конструкций/ С. В. Гарина, М. Б. Никишин // Материалы международной научно -практической конференции «Методы проектирования и оптимизации технологических процессов» – Уфа, 2017. – С. 19- 21.
  6. Люпаев, Б. М. О качественных оценках оптимальности технических решений / Б. М. Люпаев, С. В. Гарина // Современные проблемы строительного материаловедения. – Воронеж: ВГАСА, 1999. – С.259–263.
  7. Люпаев, Б. М. Особенности оптимизации расчета железобетонных элементов на поперечную силу/ Б. М. Люпаев, С. В. Гарина// Материалы международной научно -технической конференции «Актуальные вопросы строительства» – Саранск: Изд-во Мордов. ун-та, 2008. – С. 285-287.
  8. Люпаев Б. М. К расчету многоэтажных зданий на импульсные нагрузки. / Б.М. Люпаев, С.В. Гарина, В.К. Свиридюк // Вестник Мордовского университета, 2003. Т. 13. – №1-2. – С. 154-157.
  9. Люпаев Б. М. Оценка оптимальности параметров материалов и конструкций / Б. М. Люпаев, С. В. Гарина, Л. В. Салтанова // Материалы тринадцатой международной научно-технической конференции «Актуальные вопросы архитектуры и строительства» – Саранск: Изд-во Мордов. ун-та, 2014. – С. 218-219.
  10. Уайлд Д. Оптимальное проектирование / Уайлд, Д. – М.: Мир, 1981. – 272 с.

Список литературы на английском языке / References in English

  1. Garina S.V. Matematicheskoe modelirovanie processa postroenija ocenok optimal’nosti stroitel’nyh konstrukcij [Mathematical modeling of the process of estimating the optimality of building structures]: … of PhD in Engineering : 05.13.18 : defense of the thesis 30.11.05: approved 10.03.06 / Garina Svetlana Vladimirovna. – Saransk, 2005. 117p. [in Russian]
  2. Garina S. V. Optimizacija mnogokriterial’nyh reshenij [Optimization of multi-criteria decision] / S. V. Garina, B.M. Ljupaev, M. B. Nikishin // Vestnik Mordovskogo universiteta [Vestnik mordovskogo universiteta] – 2015. – № 4. – P. 10-15. [in Russian]
  3. Garina S. V. Optimal’nye reshenija mnogokriterial’nyh zadach [Optimal solutions of multicriteria problems] // Sbornik statej Mezhdunarodnoj nauchno -prakticheskoj konferencii «Informacija kak dvigatel’ nauchnogo progressa» [Collection of articles of International scientific-practical conference “Information as the engine of scientific progress”]. 2 – Ufa: AETERNA, 2017. – P. 13 – 16. [in Russian]
  4. Garina S. V. Komp’juternoe modelirovanie i ocenka optimal’nosti tehnicheskih reshenij [Computer modeling and the assessment of the optimal technical solutions]/ S. V. Garina, M. B. Nikishin // Sbornik statej Mezhdunarodnoj nauchno -prakticheskoj konferencii [Collection of articles of International scientific-practical conference] – V.3 – Ufa: AETERNA, 2017. – P. 60 – 62. [in Russian]
  5. Garina S. V. Mnogokriterial’nye reshenija v zadachah optimizacii stroitel’nyh konstrukcij [Multi-criteria decisions in optimization problems of building constructions]/ V. S. Garina, M. B. Nikishin // Materialy mezhdunarodnoj nauchno -prakticheskoj konferencii «Metody proektirovanija i optimizacii tehnologicheskih processov» [Materials of international scientific-practical conference «Methods for the design and optimization of technological processes»] – Ufa, 2017. – P. 19 – 21. [in Russian]
  6. Ljupaev B. M. O kachestvennyh ocenkah optimal’nosti tehnicheskih reshenij [On qualitative evaluation of optimal technical solutions. Modern problems of building materials] / M. Ljupaev, S. V. Garina // Sovremennye problemy stroitel’nogo materialovedenija [Modern problems in building materials] – Voronezh: VGASA, 1999, P. 259-263. [in Russian]
  7. Ljupaev B. M. Osobennosti optimizacii rascheta zhelezobetonnyh jelementov na poperechnuju silu [Optimization of the design of reinforced concrete elements in shear force]/ B. M. Ljupaev, S. V. Garina // Materialy mezhdunarodnoj nauchno -tehnicheskoj konferencii «Aktual’nye voprosy stroitel’stva» [Materials of international scientific-technical conference «Modern issues of construction»] –Saransk: Mordovia State University Press Publ., 2008. 285-287. [in Russian]
  8. Ljupaev B. M. K raschetu mnogojetazhnyh zdanij na impul’snye nagruzki [To calculation of multi-storey buildings under pulse load] / B. M. Ljupaev, S. V. Garina, V. K. Sviridyuk// Vestnik Mordovskogo universiteta [Vestnik mordovskogo universiteta] – 2003. V. 13. – №1-2. – P. 154-157. [in Russian]
  9. Ljupaev B. M. Ocenka optimal’nosti parametrov materialov i konstrukcij [Assessment of optimal parameters of materials and structures] / B. M. Ljupaev, S. V. Garina, L. V. Saltanova // Materialy trinadcatoj mezhdunarodnoj nauchno-tehnicheskoj konferencii «Aktual’nye voprosy arhitektury i stroitel’stva» [Materials of XIII international scientific and technical conference «Topical issues of architecture and construction»] – 2014. P. 218-219. [in Russian]
  10. Uajld D. Optimal’noe proektirovanie [Optimal design]/ D. Uajld – M.: Mir, 1981. 272 p. [in Russian]

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.