Pages Navigation Menu

ISSN 2227-6017 (ONLINE), ISSN 2303-9868 (PRINT), DOI: 10.18454/IRJ.2227-6017
ЭЛ № ФС 77 - 80772, 16+

Выпуск: № 03(3) () Искать в Google Scholar
Цитировать

Цитировать

Электронная ссылка | Печатная ссылка

Скопируйте отформатированную библиографическую ссылку через буфер обмена или перейдите по одной из ссылок для импорта в Менеджер библиографий.
Прокофьева М. В. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЗАЖИГАНИЯ ЖИДКОГО ТОПЛИВА ПОД ВОЗДЕЙСТВИЕМ ПОТОКОВ СВЕТОВОГО ИЗЛУЧЕНИЯ / М. В. Прокофьева, Л. Ю. Катаева // Международный научно-исследовательский журнал. — 2012. — № 03(3). — С. . — URL: https://research-journal.org/technical/chislennoe-modelirovanie-zazhiganiya-zh/ (дата обращения: 24.01.2022. ).

Импортировать


ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЗАЖИГАНИЯ ЖИДКОГО ТОПЛИВА ПОД ВОЗДЕЙСТВИЕМ ПОТОКОВ СВЕТОВОГО ИЗЛУЧЕНИЯ

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЗАЖИГАНИЯ ЖИДКОГО ТОПЛИВА ПОД ВОЗДЕЙСТВИЕМ ПОТОКОВ СВЕТОВОГО ИЗЛУЧЕНИЯ

Научная статья

Прокофьева М. В.¹, Катаева Л. Ю.²

1, 2 Нижегородский государственный технический университет им. Р.Е. Алексеева, Нижний Новгород, Россия

Аннотация

В статье приводятся результаты численного моделирования зажигания жидкого топлива под воздействием направленных потоков излучения на основе математической модели, исследуется механизм процесса и его параметры.

Ключевые слова: математическая модель, разностная схема, зажигание топлива, время зажигания

Keywords: mathematical model, difference scheme, ignition of fuel, ignition time.

 

Воздействие различных видов излучения на вещества всегда привлекало внимание исследователей. Яркое солнечное излучение нередко приводит к появлению локальных очагов пожаров. Прогнозирование и исследование процессов нагрева, а также возгорания особенно актуальны. В период высоких температур и малых осадков возникают многочисленные пожары в лесах и на торфяниках. Основная цель – спрогнозировать возможные возгорания и проследить, с какой скоростью они могут распространяться.

Экспериментальное исследование таких процессов требует использования высокоточной измерительной техники, больших затрат ресурсов и времени. В ряде случаев такие исследования вообще невозможны вследствие малых значений размеров зон воспламенения и времён задержки зажигания. По этим причинам теоретическое исследование физико-химических процессов в жидких конденсированных веществах при воздействии концентрированных потоков светового излучения является актуальной, не решенной до настоящего времени задачей.

Рассмотрена математическая модель изменения фазового состояния и физико-химических превращений в системе «концентрированный поток светового излучения – жидкость – воздух» (Рис.1), которая подробно рассмотрена в работе [1,30].

Схема области решения задачи: 1 – смесь паров жидкого топлива с воздухом; 2 – жидкость

Рис. 1. Схема области решения задачи: 1 – смесь паров жидкого топлива с воздухом; 2 – жидкость

Предполагается, что на поверхность жидкого конденсированного вещества непрерывно воздействует концентрированный поток светового излучения, имеющий радиус зоны действия r1. За счёт подводимой энергии поверхностные слои жидкости прогреваются. Начинается процесс испарения. Пары горючего диффундируют от поверхности жидкости в воздух и начинают с ним взаимодействовать. При этом увеличивается доля энергии, поглощаемой в газовой фазе при прохождении потока светового излучения. Вследствие этого формирующаяся парогазовая смесь разогревается, а интенсивность испарения горючей жидкости снижается. При достижении пороговых значений концентрации паров горючего в воздухе и температуры парогазовой смеси происходит зажигание. Интервал времени с момента начала воздействия потока светового излучения на жидкость до её воспламенения считается временем задержки зажигания td.

Рассмотрена осесимметричная задача, которая решена в цилиндрических координатах. В качестве воспламеняемых жидких веществ рассмотрены типичные пожароопасные жидкости: керосин и бензин.

Численное решение проводилось c помощью среды разработки Microsoft Visual C++, а графическое представление результатов с использованием пакета прикладных математических программ Scilab.

С помощью программной реализации построены контурные графики исследуемых величин, таким образом можно отследить как развивается процесс в визуальном представлении, что более наглядно. На Рис.2 представлены графики состояния массовой доли паров горючего вещества в парогазовой смеси в момент зажигания. Наибольших значений данная величина достигает в зоне действия излучения, что объясняется активным испарением горючего в этой области.

Состояние массовой доли паров горючего вещества в парогазовой смеси в момент зажигания при радиусе зоны действия излучения r1=0,1м и мощности потока p=100ВтСостояние массовой доли паров горючего вещества в парогазовой смеси в момент зажигания при радиусе зоны действия излучения r1=0,1м и мощности потока p=100Вт

Рис. 2 Состояние массовой доли паров горючего вещества в парогазовой смеси в момент зажигания при радиусе зоны действия излучения r1=0,1м и мощности потока p=100Вт

 Также для исследования свойств рассматриваемого процесса были определены зависимости времён задержки зажигания горючей жидкости от радиуса зоны действия излучения r1, мощности концентрированного потока светового излучения p и начальной температуры жидкого топлива .

Рис.3 иллюстрирует, что время задержки зажигания жидкого топлива сильно меняется при уменьшении радиуса зоны действия потока светового излучения в выбранном диапазоне. Это можно объяснить тем, что при меньшем радиусе зоны действия r1 большая часть тепла подводится к небольшой площадке на поверхности жидкости. Благодаря этому происходит ускорение процесса испарения, возрастает концентрация паров горючего над поверхностью жидкого конденсированного вещества. Чем меньше r1, тем быстрее температура парогазовой смеси и концентрации её компонентов достигают критических значений.

Зависимость безразмерного времени зажигания τd от радиуса зоны действия направленного светового излучения r1

Рис.3 Зависимость безразмерного времени зажигания τd от радиуса зоны действия направленного светового излучения r1.

При уменьшении  мощности концентрированного потока излучения от 200Вт до 40Вт время задержки зажигания увеличилось на 12,8%.

Это объясняется тем, что уменьшается количество тепла, которое подводится к воспламеняемой жидкости от источника зажигания. Так как плотность энергии концентрированного потока светового излучения максимальна на оси симметрии, на этом участке с понижением мощности значительно уменьшается доля теплоты, расходуемой на прогрев и испарение жидкости.

При варьировании начальной температуры жидкого топлива в пределах от 311К до 259К время задержки зажигания увеличивается на 14 %. Это свидетельствует о довольно значительном воздействии изменения начальной температуры жидкого конденсированного вещества на исследуемый процесс, поскольку от этого параметра рассматриваемой системы зависит скорость испарения горючего.

Результаты численного моделирования изменения фазового состояния и физико-химических превращений в системе «концентрированный поток светового излучения – жидкость – воздух» показывают возможность реализации процесса в достаточно широком диапазоне внешних условий и внутренних параметров системы, что подтверждает высокую потенциальную опасность возникновения пожаров при воздействии потока светового излучения на жидкое конденсированное вещество.

Список литературы / References

1. Высокоморная, О.В. Численное решение плоской задачи зажигания жидкого конденсированного вещества потоком излучения / О.В. Высокоморная, Г.В. Кузнецов, П.А. Стрижак ; НИ ТПУ. – Томск, 2010. – 18 с. – Деп. в ВИНИТИ 14.07.2010, № 439.

2. Патанкар С.В. Численное решение задач теплопроводности и конвективного теплообмена при течении в каналах. Москва: Изд-во МЭИ, 2003.

3. Самарский, А.А. Теория разностных схем / А.А. Самарский. – М.: Наука, 1983.– 616с.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.