
International Research Journal ▪ № 1 (163) ▪ January

МЕТОДЫ И СИСТЕМЫ ЗАЩИТЫ ИНФОРМАЦИИ, ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ/METHODS 
AND SYSTEMS OF INFORMATION PROTECTION, INFORMATION SECURITY 

DOI: https://doi.org/10.60797/IRJ.2026.163.57 

MFCTIIF: MULTI-FEED CYBER THREAT INTELLIGENCE INTEGRATION FRAMEWORK 

Research article 

Iasenovets A.V.1, *, Tang F.2

1 ORCID : 0009-0008-0008-3746; 
2 ORCID : 0000-0002-0048-9876; 

1, 2 Chongqing University of Posts and Telecommunications, Chongqing, China 

* Corresponding author (archee.busy[at]gmail.com) 

Abstract 
The growing volume and diversity of cyber threat intelligence (CTI) feeds pose significant challenges to interoperability,  

metadata  consistency,  and automated threat  assessment.  In  this  paper,  we present  MFCTIIF — Multi-Feed Cyber  Threat 
Intelligence  Integration  Framework  designed  to  aggregate,  enrich,  and  classify  malware  indicators  from  heterogeneous 
sources.  The  system  performs  structured  data  matching,  synonym  resolution,  and  automated  threat-level  classification, 
outputting JSON-formatted feeds suitable for security operations. We evaluate MFCTIIF on the latest 100 malware samples  
revealing the majority of them represent high-risk threats such as RATs and consistent end-to-end processing latency of ≈15–
17s per sample. A comparative analysis against four existing frameworks demonstrates that MFCTIIF is the only system to 
fulfill all seven key attributes, however, it is constrained by metadata gaps and classification imbalance for unknown threats.  
To  address  this,  we  propose  future  enhancements  including  automated  mapping  to  STIX by  LLM models,  LLM-driven 
classification, fuzzy matching, and parallelized caching to improve coverage and latency.
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Аннотация 
Растущий объем и разнообразие потоков данных разведки киберугроз (CTI)  создают серьезные проблемы для 

взаимодействия, согласованности метаданных и автоматизированной оценки угроз. В этой статье мы представляем 
MFCTIIF  —  интеграционную  платформу  многоканальной  разведки  киберугроз,  предназначенную  для  агрегации, 
обогащения и классификации индикаторов вредоносных программ из разнородных источников. Система выполняет 
структурированное  сопоставление  данных,  разрешение  синонимов  и  автоматизированную  классификацию  уровня 
угроз,  выводя  потоки  в  формате  JSON,  подходящие  для  операций  по  обеспечению безопасности.  Мы тестируем 
MFCTIIF  на  основе  100  последних  образцов  вредоносных  программ,  показывая,  что  большинство  из  них 
представляют собой угрозы высокого риска, такие как RAT, и имеют постоянную задержку сквозной обработки ≈15–17 
с  на  образец.  Сравнительный  анализ  с  четырьмя  существующими  решениями  показывает,  что  MFCTIIF  — 
единственная  система,  отвечающая  всем  семи  ключевым  требованиям,  однако  она  ограничена  пробелами  в  
метаданных  и  дисбалансом  классификации  для  неизвестных  угроз.  Для  решения  этой  проблемы  мы  предлагаем 
будущие  усовершенствования,  включая  автоматизированный маппинг  к  формату  STIX с  помощью LLM моделей, 
классификацию на основе LLM, нечеткое сопоставление и параллельное кэширование для улучшения покрытия и 
уменьшения задержек.

Ключевые слова: анализ киберугроз, классификация угроз, интеграция данных из нескольких источников, анализ 
вредоносных программ, платформа. 

Introduction 
Cyber Threat Intelligence (CTI) is a structured form of cybersecurity information aimed at providing organizations with 

critical  insights  about  emerging and existing cyber  threats  [1].  Such intelligence  typically  includes  data  about  malicious 
indicators, tactics, techniques, and procedures used by cyber adversaries, enabling organizations to proactively manage their 
cybersecurity posture in alignment with internationally recognized frameworks such as the National Institute of Standards and  
Technology (NIST) Cybersecurity Framework [2], and the EU Directive on security of network and information systems [3].

As the scale of cyberattacks continues to escalate, so does the urgency to respond with timely, actionable, and shareable 
threat intelligence. According to recent statistics, in 2024 alone there were over 6.06 billion malware attacks globally [4], while 
on average it takes 194 days to identify a data breach [5] and the Cam4 case holds the record for the largest data breach of all  
time with over 10 billion compromised accounts [6].
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Sharing CTI between organizations significantly enhances their collective defense capabilities and situational awareness 
[7], [8]. When one entity experiences a cyber-attack, the knowledge gained can aid other entities in managing similar cyber-
threats [1], [9]. To ensure efficient interoperability [10], CTI commonly employs standards for delivery mechanism, such as 
TAXII [11] and content format such as STIX by OASIS [12] which is aligned with MITRE ATT&CK attack patterns [13].  
Some  works  propose  using  TAXII  standard  with  a  blockchain  has  been  proposed  to  ensure  privacy,  data  integrity  and  
interoperability in CTI sharing [14], [15]. However, despite the rise of threat intelligence platforms (TIPs), most organizations  
fail  to  operationalize  CTI  effectively  across  their  infrastructure.  The  interoperability  problem is  well-documented  in  the  
literature. Rantos et al. [10] provided a comprehensive account of interoperability challenges in CTI ecosystems, identifying  
syntactic mismatches, semantic inconsistencies, and governance-level fragmentation as persistent barriers. They emphasize 
that CTI is not only difficult to exchange but also hard to align across heterogeneous systems. This reveals not only a technical  
gap, but a deeper systemic failure in CTI integration and interoperability across diverse sources and systems.

To address these gaps,  we propose the MFCTIIF — Multi-Feed Cyber Threat  Intelligence Integration Framework,  a 
modular system designed to unify multi-source CTI and enhance its operational value. The contributions of this work are as 
follows:

1.  Unified  multi-source  integration  for  heterogeneous  indicators.  MFCTIIF  automatically  ingests  and  harmonizes 
indicators from multiple CTI feeds [16], [17], [18] addressing the heterogeneity challenge.

2. Metadata enrichment for effective risk prioritization by aggregating auxiliary attributes such as AV detections, malware  
family classifications, and contextual threat tags, MFCTIIF enriches sparse raw indicators.

3. Automated threat-level assessment and actionable CTI output. MFCTIIF incorporates a lightweight analytics module  
that computes a threat severity score based on frequency and classification of observed malware samples.

4. Empirical benchmarking on recent malware samples. We evaluate MFCTIIF on the 100 latest malware samples from 
MalwareBazaar,  demonstrating  its  effectiveness  in  unifying  multi-source  CTI,  enriching  sparse  indicators,  and  providing 
actionable threat-level assessments in real-world conditions.

By  combining  multi-source  integration,  semantic  enrichment,  and  automated  threat  assessment,  MFCTIIF  converts  
fragmented and underutilized threat indicators into coherent, high-value intelligence. This enables security operations centers 
(SOCs) to improve decision-making and reduce mean time to response (MTTR).

The remainder of this paper is organized as follows. Section 2 presents the methodology, beginning with the mathematical  
model of multi-feed CTI integration (Section 2.1) and the system architecture (Section 2.2), followed by detailed descriptions  
of the import (Section 2.3), data matching (Section 2.4), analytics (Section 2.5), and export modules (Section 2.6). Section 3  
provides the evaluation, including measurements of average API response time (Section 3.1), end-to-end latency per sample 
(Section  3.2),  and  analysis  of  sample  characteristics  (Section  3.3),  threat  level  calculations  (Section  3.4),  and  family  
distribution (Section 3.5). Section 4 presents the discussion, highlighting the key findings (Section 4.1) and outlining directions 
for future research (Section 4.2). Finally, Section 5 concludes the paper and summarizes the key contributions, with references  
provided at the end.

Methodology 
This  section  describes  the  design  and  operation  of  the  MFCTIIF  framework,  covering  its  mathematical  foundation,  

architecture, and core modules. Section 2.1 introduces the mathematical model, formalizing the mapping of malware samples  
to hashes, families, and threat levels. Section 2.2 presents the system architecture, outlining the workflow from data ingestion  
to threat-level output. Sections 2.3–2.6 describe the four core modules: the Import module for multi -feed ingestion, the Data 
Matching module for metadata alignment, the Analytics module for automated threat assessment, and the Export module for  
producing structured JSON feeds.

2.1. Mathematical model
To systematically unify heterogeneous cyber threat intelligence (CTI) feeds and support automated threat assessment, we  

define a formal mathematical model. This model captures malware samples, their associated attributes, probabilistic detection 
behavior, and temporal evolution, forming the analytical foundation of the MFCTIIF framework. Let the following sets to  
represent the principal entities in multi-feed CTI analysis:

-  — set of malware samples under analysis;
-  — set of associated signatures (e.g., cryptographic hashes, AV signatures);
-  — set of malware classes (e.g., Virus, Trojan, Worm);
-  = {LOW,MEDIUM,HIGH} — discrete threat severity levels;
-  — set of malware families (grouped by behavioral or lineage similarity).
To relate malware samples to their features, we define four key mapping functions:
1.  Cryptographic  identity:  maps  each  malware  sample  to  its  SHA-256  hash,  providing  a  unique  identifier  for  feed 

unification.

(1)

2. Signature mapping: associates a sample with the set of signatures collected from av engines and external sources, where 
P is a power set.

(2)

3. Family mapping: assigns each sample to one or more malware families, supporting lineage-based context enrichment.

(3)

4.  Threat  level  classification:  maps  class  information  to  a  final  severity  level,  consolidating  lineage-based  context  
enrichment.
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(4)

Each malware sample   may belong to multiple classes  . To compute the overall threat 
level, we take the maximum severity across all its classes:

(5)

Where  is a class-to-severity mapping, for example:

(6)

Then, given a sample which belongs to Adware, RiskTool, and Rootkit, we have:

(7)

To incorporate detection reliability, we define the detection probability (8) for a malware sample   by an AV engine 
. This allows for risk quantification based on detection consensus, confidence-weighted threat scoring and integration with 
automated analytics.

(8)

Where  is the number of positive detections and  is the total number of scans.
For each sample , a unified threat feed entry is generated encapsulating its main attributes, such as cryptographic hash,  

signature, family mapping and threat classification:

(9)

This tuple serves as the canonical representation of a threat indicator in the MFCTIIF framework. The complete threat feed 
is then expressed as:

(10)

Finally, combining the above, the multi-feed CTI integration model is represented as:

(11)

2.2. System architecture
The system architecture operationalizes the mathematical model introduced in the previous section by implementing a  

complete  multi-stage  CTI  processing  pipeline.  Each  stage  in  the  workflow  corresponds  to  a  function  of  the  model:  
cryptographic  identification,  classification  and  enrichment,  threat  assessment,  and  final  feed  export.  Figure  1  shows  the  
deployment diagram of the MFCTIIF, illustrating the interaction between external data sources, internal processing modules,  
the cache, and the output feed.

Figure 1 - MFCTIIF deployment diagram
DOI: https://doi.org/10.60797/IRJ.2026.163.57.1

The architecture is composed of four core modules, such as Import, Data Matching, Analytics, and Export, which are  
connected in a linear workflow with feedback through caching and storage components. An external user interacts only with  
the resulting JSON feed, while the internal modules orchestrate collection, enrichment, analysis, and output in sequence.
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2.3. Import module
The  workflow  begins  with  the  Import  Module  (Figure  2),  which  collects  malware  samples  from  multiple  sources, 

including MalwareBazaar, VirusTotal, and the APT ETDA database. For each batch of new samples, the system first checks the  
ETDA cache to avoid redundant queries. If the requested data is unavailable, fresh metadata is retrieved from the ETDA  
database and stored in the cache for subsequent lookups. Simultaneously, the module queries VirusTotal to gather AV scan 
results for each sample. This stage ensures that every sample entering the pipeline has both its cryptographic identity and  
associated threat intelligence collected before handing the samples to the next stage.

Figure 2 - Import module sequence diagram
DOI: https://doi.org/10.60797/IRJ.2026.163.57.2
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2.4. Data matching module
Once raw samples are imported, the Data Matching Module (Figure 3) enriches the data context by identifying malware 

classifications and their synonyms. This stage performs two ETDA queries for each sample: one to classify the malware type 
and another to retrieve synonym relationships. Both queries follow the same cache-first strategy — cached results are used  
when available,  and new results  are  fetched and stored when cache misses  occur.  After  the ETDA lookups,  the module  
performs internal processing to map malware classes, create family lists, and associate AV detections with the appropriate  
families — forming the core feed entry for the next stage.

5



International Research Journal ▪ № 1 (163) ▪ January

Figure 3 - Data matching module sequence diagram
DOI: https://doi.org/10.60797/IRJ.2026.163.57.3

2.5. Analytics module
The Analytics Module (Figure 4) performs threat level assessment based on the enriched feed entries provided by the Data  

Matching Module. The core logic focuses on computing the highest observed threat level among the collected indicators.  
Counters are initialized for high, medium, and low threat categories, each incremented based on the classifications in the feed  
entry. The final threat level corresponds to the maximum observed category and is then attached to the sample record. At the  
end of this stage, the feed entry is fully enriched with a computed threat level and is ready for export stage.
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Figure 4 - Analytics module sequence diagram
DOI: https://doi.org/10.60797/IRJ.2026.163.57.4

2.6. Export module
The final stage of the workflow (Figure 5) is handled by the Export Module, which converts enriched feed entries into the  

JSON format for distribution. Each feed entry is transformed into a JSON object, appended with a newline character, and 
written to the output file in append mode to preserve history. The module also handles proper file closure and confirmation of  
successful writes, ensuring that the feed remains consistent and incrementally updateable.
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Figure 5 - Export module sequence diagram
DOI: https://doi.org/10.60797/IRJ.2026.163.57.5

Evaluation 
This section evaluates the MFCTIIF framework in terms of performance and threat intelligence output quality. Section 3.1 

measures the average API response time,  reflecting external  dependency performance.  Section 3.2 reports  the end-to-end 
latency per  sample,  highlighting workflow efficiency and occasional  delays.  Section 3.3  analyzes  sample  characteristics,  
focusing on metadata coverage in malware_class and malware_family. Section 3.4 presents the threat level distribution, while  
Section 3.5 examines the malware family distribution.

3.1. Average API response time
Figure 6 illustrates the response times for 10 consecutive queries submitted to the MalwareBazaar’s “get_recent” API. The  

horizontal axis represents the sequential query index, while the vertical axis shows the measured latency in seconds. Each blue 
marker denotes the individual response time of a single query, and the connecting line highlights the temporal variation across  
the series of requests.

Figure 6 - MalwareBazaar get_recent timings for 100 samples
DOI: https://doi.org/10.60797/IRJ.2026.163.57.6
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A red dashed line indicates the mean response time, calculated as 4.89 seconds, providing a baseline for performance  
assessment. The shaded blue region represents one standard deviation (±0.20 seconds) around the mean, illustrating the natural  
variation in query latency. However, two notable deviations are observed: Query 2 exhibits the maximum latency (~5.23 s),  
while Query 6 achieves the minimum latency (~4.60 s). Despite these outliers, the overall trend indicates low variance and a  
consistent service response, which is beneficial for time-sensitive malware feed processing within the proposed framework. 

3.2. End to end latency per sample
Figure 7 shows the end-to-end latency for processing 100 malware samples through the MFCTIIF pipeline. Most samples 

complete within 15–17 seconds, forming a stable baseline for import, data matching, analytics, and export. This indicates that  
the workflow is generally efficient and predictable under normal conditions.

Figure 7 - End to end latency per sample
DOI: https://doi.org/10.60797/IRJ.2026.163.57.7

Two samples exhibit significant latency spikes (~31–32 seconds). These outliers are likely caused by cache misses and 
VirusTotal API rate-limiting, which introduce long delays when uncached samples require full remote analysis.

3.3. Samples characteristics
Figure 8 illustrates the distribution of the latest 100 malware samples based on the presence or absence of metadata entries  

in two key fields: malware_class and malware_family. These fields are critical for downstream analytics, particularly for the  
threat level assessment component of the system.

Figure 8 - Sample characteristics distribution
DOI: https://doi.org/10.60797/IRJ.2026.163.57.8

The results reveal that 58% of the samples contain at least one family entry, while 33% contain at least one classification  
(class) entry. Notably, only one-third (33%) of the samples contain both types of metadata. Conversely, a significant portion of  
42% of samples contains neither classification nor family information.

3.4. Threat level calculation
The  distribution  shown  in  Figure  9  is  a  direct  consequence  of  the  metadata  coverage  illustrated  in  Figure  8.  As  

demonstrated previously, 42% of the analyzed samples lack entries in both the malware_class and malware_family fields, and 
only 33% contain valid class information required for threat level computation. This absence of classification metadata forces  
the analytics module to either omit threat scoring or rely solely on fallback detection-to-class mapping.

9



International Research Journal ▪ № 1 (163) ▪ January

Figure 9 - Threat level distribution in recognized samples
DOI: https://doi.org/10.60797/IRJ.2026.163.57.9

As a result, the system successfully assigns a “High” threat level to all samples with recognized classes, because these  
samples correspond to well-known high-impact families such as trojans, backdoors, and ransomware. However, the lack of  
medium and low classifications is not necessarily an indication that the dataset lacks less severe threat — it instead reflects the  
structural limitation imposed by incomplete metadata.

3.5. Family Distribution
Finally, Figure 10 illustrates the distribution of malware families within the analyzed dataset, highlighting both prevalent 

and less common threats. The most dominant malware family in the dataset is QuasarRAT (30%), which is a well-known 
remote access trojan (RAT) capable of persistent system compromise and exfiltration of sensitive data. Its high prevalence  
signals that remote access threats remain a critical risk vector in the analyzed samples. Next up we have njrat (22%), also  
known as NetWire, is another widespread RAT family observed in the dataset. It is modular in design and capable of multiple  
malicious actions, including credential theft and system takeover, reinforcing the dominance of RATs in the current sample set.  
Mirai (2%) appears less frequently but is significant due to its history of powering large-scale IoT-based DDoS botnets. Even  
low  prevalence  in  this  dataset  is  operationally  important,  as  Mirai  infections  can  escalate  into  network-wide  attacks.  
RemcosRAT and Xorbot (2% each) form a smaller but still notable portion of the dataset. These threats indicate a long tail of  
active RAT and botnet variants circulating in the wild. Amadey (1%) is among the least represented families in the dataset.  
Despite its low frequency, its appearance highlights the diverse composition of threats, including loader-type malware.

Figure 10 - Malware family distribution
DOI: https://doi.org/10.60797/IRJ.2026.163.57.10

Notably,  42%  of  samples  remain  classified  as  “Unknown  Family,”  reflecting  gaps  in  available  CTI  metadata  and  
limitations in system’s current enrichment capabilities.

Discussion 
4.1. Key findings
The previous  section evaluation of  the  MFCTIIF highlights  its  effectiveness  in  integrating multi-source  cyber  threat 

intelligence, while also revealing structural limitations that affect coverage and balance. The system successfully unifies feeds 
from MalwareBazaar,  VirusTotal,  and  APT ETDA,  producing  enriched  JSON outputs  that  enable  threat  assessment  and 
prioritization, as shown in Figure 11.
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Figure 11 - Malware sample entry
DOI: https://doi.org/10.60797/IRJ.2026.163.57.11

Across the evaluated dataset of 100 malware samples, the framework consistently classified recognized entries as high-
threat malware, dominated by Remote Access Trojans (RATs) and banking trojans. This trend is evident in the malware family 
distribution, where QuasarRAT (30%) and njrat (22%) emerged as the most prevalent families. Such findings confirm that the  
analyzed dataset primarily consists of active, high-impact threats, with a strong emphasis on endpoint compromise and data 
exfiltration.

Metadata coverage, however, proved to be a decisive factor in the system’s overall performance. As shown in Figure 8, 
42% of samples lacked entries for both malware class and family, which limited the analytics module’s ability to compute  
threat levels for the majority of samples. This deficiency directly influenced the threat level distribution presented in Figure 9,  
where all classified samples were assigned a high-threat level and no medium or low-level classifications were produced. The  
absence of a graded severity spectrum does not necessarily indicate that the dataset lacks lower-risk samples; rather, it reflects 
the system’s dependency on complete and consistent metadata. Samples with missing class information, or those requiring  
fuzzy matching and external enrichment, currently either remain unclassified or rely solely on fallback mapping derived from 
AV detection strings.

Operational performance analysis further demonstrated that the framework is generally efficient and predictable, with an 
end-to-end latency of approximately 15–17 seconds per sample under normal conditions. Two prominent latency spikes (~31–
32 seconds) were observed and are attributable to VirusTotal cache misses and API rate-limiting, which are known constraints  
when processing uncached or newly submitted files. Although the baseline performance is acceptable for batch processing,  
reliance  on  external  APIs  introduces  non-deterministic  delays  that  could  affect  real-time  alerting  and  large-scale  feed  
generation.

4.2. Comparative analysis
We evaluate our work and 4 previous related works on 7 attributes, such as 
1) multi-Source CTI Integration;
2) heterogeneous Feed Support (MalwareBazaar / VT / ETDA);
3) metadata Enrichment (Families + Signatures);
4) automated Threat-Level Classification;
5) standardized / Actionable Output (JSON/STIX/KG);
6) latency / Performance Evaluation;
7) empirical Evaluation on Recent Malware Samples, as shown in Table 1.
Rastogi et al. [19] in MALOnt focuses on semantic enrichment and ontology-driven knowledge graph construction for 

malware threat intelligence
1) it aggregates data from multiple threat reports;
2) supports general heterogeneous sources, but not specific to MalwareBazaar/VT/ETDA;
3) it also includes malware families, characteristics, attacker groups;
4) but does not assign low/medium/high threat levels;
5) it provides knowledge-graphs only, not JSON or STIX output;
6) neither does it perform timing nor latency analysis;
7) finally, it is evaluated on annotated reports, not live malware feeds;
Okazaki et al., 2024 [20] system integrates multiple AV engines for collaborative detection using VirusTotal:
1) it supports collaborative multi-AV integration;
2) and has partial support for VirusTotal and MalwareBazaar;
3) metadata focus is on AV voting, not family or signature enrichment;
4) it outputs malicious/benign verdict, but has no severity scoring;
5) it provides detection result only, not JSON/STIX output;
6) it collects recall and weighted voting performance, but not latency.
7) it drives recall evaluation on real 7-day continuous sets of samples from MalwareBazaar.
Gao  et  al.,  2024  [21]  ThreatKG uses  AI  techniques  to  unify  structured/unstructured  OSCTI  and  construct  a  threat  

knowledge graph (KG) with rich context: 
1) it aggregates OSCTI from many sources;
2) but has no VT/MB/ETDA ingestion;
3) it extracts TTPs, entities, relations;
4) and has no explicit threat level scoring;
5) it uses knowledge graph and no JSON/STIX;

11
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6) finally no runtime nor latency evaluation and;
7) no per-sample malware feed evaluation.
Rastogi et al., 2023 [22] TINKER captures multi-source OSCTI and also builds a CTI Knowledge Graph (CTI-KG) like 

ThreatKG:
1) it aggregates multi-modal OSCTI (blogs, reports, CVEs, GitHub feeds);
2) but has no direct API-level support for MB/VT/ETDA;
3) enrichment with entities, malware families, relationships;
4) but no threat level scoring;
5) it uses knowledge graph only, no JSON or STIX export;
6) nor does it run latency or runtime evaluation;
7) evaluated on curated CTI reports and triple inference, not live malware feeds.

Table 1 - Comparative analysis table

DOI: https://doi.org/10.60797/IRJ.2026.163.57.12

Ref. (1) (2) (3) (4) (5) (6) (7)

[19] + - + - KG - -

[20] + + - - - + +

[21] + - + - KG - -

[22] + - + - KG - -

MFCTIIF + + + + JSON + +

Despite demonstrating functional success in Table 1 over related works, MFCTIIF exhibits several current limitations. The 
framework is constrained by incomplete metadata, which produces gaps in class and family resolution, and leads to a skewed 
threat  level  distribution dominated by high-severity  classifications.  External  API dependencies  introduce sporadic  latency 
spikes, reducing throughput and predictability. Also, the reliance on signature-driven classification and exact CTI mappings  
limits its ability to handle emerging, obfuscated, or zero-day malware, leaving a portion of samples unclassified and reducing  
the feed’s overall coverage. To address these issues, we propose some future research directions below.

4.3. Directions for future research
We now highlight  several  directions  for  future  research that  can enhance the  capabilities,  coverage,  and operational  

resilience of the MFCTIIF. These directions focus on improving metadata completeness, classification accuracy, and system 
performance,  thereby  addressing  the  current  constraints  of  metadata  gaps,  skewed  threat  distributions,  and  external  API 
latency.

First,  standardizing output  using STIX (Structured Threat  Information eXpression) will  improve interoperability with  
existing  CTI  platforms and  automated  threat-sharing  ecosystems.  By expressing  threat  indicators,  malware  families,  and 
associated attributes in STIX format, the framework could seamlessly integrate with TAXII servers and external SOC tooling.  
Standardization would also facilitate structured reasoning over indicators and relationships in downstream pipelines [12], [23].  
In future iterations, automated mapping to STIX could be supported by LLM-based models, which have demonstrated strong 
performance in extracting CTI entities and generating machine-readable threat reports, as shown in AZERG [24].

Second, classification accuracy and coverage can be improved by integrating machine learning (ML) and large language 
models (LLMs) to infer malware classes and threat levels for samples with missing or incomplete metadata. LLMs have 
recently shown strong utility in CTI contexts, such as classifying threat reports and enriching indicators with contextual labels 
[25], [26]. In combination with heuristic and keyword-based extraction from AV detections, these methods can address the 
classification imbalance observed in Figures 8 and 9, producing a more nuanced distribution of low, medium, and high-threat 
samples.

Third, system performance and scalability can be enhanced through improved caching strategies and task parallelization.  
Our  latency  benchmarks  demonstrate  that  end-to-end  processing  is  dominated  by  the  import  stage  due  to  VirusTotal 
rate-limiting. Leveraging persistent caching and parallel execution of API requests could reduce latency spikes and improve  
batch throughput, a technique widely applied in high-performance data pipelines.

Finally, the adoption of fuzzy matching and similarity metrics can address structural gaps in metadata mapping. Current  
ETDA lookups  depend  on  exact  or  near-exact  signature  matches,  leaving  many  samples  unclassified.  Implementing 
Levenshtein distance [27] or Python’s difflib ratio [28] for family and signature mapping can significantly improve coverage  
by detecting misspellings, minor variations, or obfuscated names in threat feeds [29]. Extending this approach to AV detection  
strings could further enhance threat scoring for previously “unknown” samples.

Conclusion 
This paper presented the MFCTIIF — Multi-Feed Cyber Threat Intelligence Integration Framework, designed to address 

interoperability and enrichment challenges in multi-source cyber threat intelligence. By integrating feeds from MalwareBazaar, 
VirusTotal, and APT ETDA, the framework performs automated data matching, family and class resolution, and threat-level 
assessment,  producing structured JSON outputs  suitable  for  SOC operations.  Evaluation on 100 recent  malware samples 
demonstrated that the system reliably identifies high-risk threats, dominated by RATs and banking trojans, with a stable 15–17 
second end-to-end latency and occasional API-induced spikes.

12



International Research Journal ▪ № 1 (163) ▪ January

A comparative analysis against four representative CTI aggregation and enrichment frameworks highlights that MFCTIIF 
is the only approach covering all seven evaluation attributes, including multi-feed integration, heterogeneous feed support, 
metadata enrichment, automated threat scoring, actionable outputs, latency evaluation, and empirical testing on live malware  
samples.

Despite these promising results, the framework’s current impact is limited by metadata gaps, classification imbalance, and 
external API dependencies, which leave a portion of samples unclassified or skew threat scores toward high severity. Future 
enhancements should focus on STIX/TAXII standardization, ML/LLM-driven classification for unknown samples, improved 
caching and parallelization, and fuzzy metadata matching to expand coverage and reduce latency. These improvements will  
enable MFCTIIF to evolve into a low-latency, AI-augmented CTI pipeline, further strengthening its value for operational 
cybersecurity and threat response.
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