ГАСТРОЭНТЕРОЛОГИЯ И ДИЕТОЛОГИЯ / GASTROENTEROLOGY AND DIETETICS

DOI: https://doi.org/10.60797/IRJ.2024.148.90

A PRELIMINARY AUTOMATED SOFTWARE INTERFACE FOR THE PREPARATION OF INITIAL MEDICAL DATA FOR AUTOMATED SYSTEM-COGNITIVE ANALYSIS AND PREDICTION OF TREATMENT RESULTS

Research article

Tegai A.V.¹, Lutsenko E.V.^{2,} *, Golovin N.S.³

²ORCID: 0000-0002-2742-0502;

¹Kuban Medical Institute, Krasnodar, Russian Federation

² Kuban State Agrarian University named after I.T. Trubilin, Krasnodar, Russian Federation

³Elite Private Economic School, Novi Sad, Serbia

* Corresponding author (prof.lutsenko[at]gmail.com)

Abstract

In recent years, artificial intelligence (AI) has significantly transformed approaches to medical data analysis and treatment outcome prediction. A key challenge is integrating AI with medical information systems to enhance the accuracy and efficiency of predictions. This paper presents the development of a preliminary automated programming interface (API) designed to prepare initial data from medical databases for subsequent systemic-cognitive analysis and prediction of gallstone disease treatment outcomes. The proposed API simplifies the process of data integration and adaptation for use in the intelligent system "Eidos". This system enables detailed analysis and prediction of treatment outcomes, supporting more accurate and well-founded decision-making in medical practice. The paper examines the architecture of the API, its functional capabilities, and the results of testing on real-world data, including information on patients who underwent surgery for gallstone disease in healthcare institutions of Krasnodar Krai during the period from 2016 to 2024. Special attention is given to data adaptation for the "Eidos" system, which can process large volumes of medical information and identify cause-and-effect relationships, which is crucial for improving the quality of medical care and enhancing the effectiveness of therapeutic interventions. The application of this interface significantly reduces the time required for data preparation, minimizes errors, and improves the accuracy of treatment outcome predictions. Thus, the developed programming interface is a valuable tool for automating scientific research in the field of medicine, promoting the integration of AI into clinical practice, and opening new opportunities for personalized medicine.

Keywords: API, ASC-analysis, Eidos intelligent system, gallstone disease, prediction, outcome forecasting, surgical treatment.

ПРЕДВАРИТЕЛЬНЫЙ АВТОМАТИЗИРОВАННЫЙ ПРОГРАММНЫЙ ИНТЕРФЕЙС ДЛЯ ПОДГОТОВКИ ИСХОДНЫХ МЕДИЦИНСКИХ ДАННЫХ ДЛЯ АВТОМАТИЗИРОВАННОГО СИСТЕМНО-КОГНИТИВНОГО АНАЛИЗА И ПРОГНОЗИРОВАНИЯ РЕЗУЛЬТАТОВ ЛЕЧЕНИЯ

Научная статья

Тегай А.В.¹, Луценко Е.В.^{2, *}, Головин Н.С.³

²ORCID: 0000-0002-2742-0502;

¹Кубанский медицинский институт, Краснодар, Российская Федерация

² Кубанский государственный аграрный университет имени И.Т. Трубилина, Краснодар, Российская Федерация

³Элитная частная экономическая школа, Нови-Сад, Сербия

* Корреспондирующий автор (prof.lutsenko[at]gmail.com)

Аннотация

В последние годы искусственный интеллект (ИИ) значительно изменил подходы к анализу медицинских данных и прогнозированию исходов лечения. Одной из ключевых задач является интеграция ИИ с медицинскими информационными системами для повышения точности и эффективности прогнозов. В данной статье представлена разработка предварительного автоматизированного программного интерфейса (API), который обеспечивает подготовку исходных данных из медицинских баз для дальнейшего системно-когнитивного анализа и прогнозирования исходов лечения желчнокаменной болезни. Предложенный API упрощает процесс интеграции данных и их адаптации для использования в интеллектуальной системе «Эйдос». Эта система позволяет проводить детальный анализ и прогнозировать результаты лечения, что способствует более точному и обоснованному принятию решений в медицинской практике. В статье рассмотрены особенности архитектуры АРІ, его функциональные возможности, а также приведены результаты тестирования на реальных данных, включающих информацию о пациентах, перенесших оперативное лечение желчнокаменной болезни в учреждениях здравоохранения Краснодарского края за период 2016-2024 годов. Особое внимание уделено адаптации данных для системы «Эйдос», способной обрабатывать большие массивы медицинской информации и выявлять причинно-следственные связи, что имеет важное значение для улучшения качества медицинской помощи и повышения эффективности лечебных мероприятий. Применение данного интерфейса позволяет значительно сократить время на подготовку данных, минимизировать ошибки и улучшить точность прогнозирования исходов лечения. Таким образом, разработанный программный интерфейс представляет собой важный инструмент для автоматизации научных исследований в области медицины, способствуя интеграции ИИ в клиническую практику и открывая новые возможности для персонализированной медицины.

Ключевые слова: АРІ, АСК-анализ, интеллектуальная система Эйдос, желчнокаменная болезнь, прогнозирование, прогнозирование исходов, оперативное лечение.

Introduction

In recent years, a real revolution in the field of artificial intelligence has been taking place all over the world [1], [2]. It would not be an exaggeration to say that artificial intelligence is one of the main directions of development of modern information technologies (along with promising human-machine interfaces and computer networks) and technologies in general.

Main Part

A huge number of intelligent systems of very high quality for a wide variety of purposes have already appeared in the public domain, and new ones appear almost every day. To personally verify this, it is enough to search the Internet yourself, simply follow the links.

Among these systems, we can highlight dialogue support systems (chatbots), systems for generating texts, images and videos based on verbal descriptions and prototypes, intelligent systems for marketing, design, songwriting (both lyrics and music) and many, many others (Figure 1).

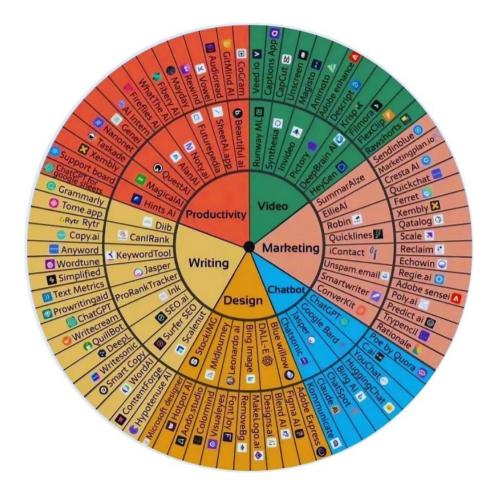


Figure 1 - Classification of artificial intelligence systems DOI: https://doi.org/10.60797/IRJ.2024.148.90.1

In the context of this article, it is especially important that artificial intelligence systems are systems of automation of intellectual activity, which not only repeatedly, but in some cases by several orders of magnitude, increase the capabilities of natural intelligence. In particular, these systems can be used as tools of scientific knowledge in a wide variety of scientific fields, including medicine [3], [4], [5].

This is very relevant, since it allows achieving not only scientific, but also practical goals, i.e. it not only provides new scientific knowledge in the field of medicine, but will allow developing new scientifically based recommendations for improving medical practice, both in terms of types of diseases, regions and healthcare institutions, and for specific patients.

But not all intelligent systems are suitable for this, but only systems of intelligent analysis of numerical and text tabular data that are in full open free access. We chose the intelligent system "Eidos" [6], [7], which is one of the most popular intelligent systems of Russian development in the world. Quite a lot has been written about this system: [6], [7]: 715 scientific papers in various fields of science, including 47 monographs, 27 textbooks, including 3 textbooks on intelligent information systems with the stamps of the UMO and the Ministry, 34 patents of the Russian Federation for artificial intelligence systems, 380 publications in publications included in the list of the Higher Attestation Commission of the Russian Federation, 21 publications in journals of the RSCI core (according to RSCI data), 4 articles in journals included in WoS, 7 publications in

journals included in Scopus. Three monographs in the Library of Congress of the United States. ASC-analysis and the "Eidos" system have been successfully applied in 10 doctoral and 8 candidate dissertations in economic, technical, biological, agricultural, psychological and medical sciences, several more doctoral and candidate dissertations in these areas of science using ASC-analysis and the "Eidos" system are in the stage of preparation for defense. Therefore, it is not advisable to describe this system in detail in this short article, and we will only give a brief overview of it.

There is quite significant and successful experience in using the Eidos system to solve medical problems [8], [10], [12], [13].

The universal cognitive analytical system "Eidos" differs from most intelligent systems in at least some of the following parameters:

-is universal and can be applied in many subject areas, since it was developed in a universal formulation, independent of the subject area and has 6 automated software interfaces (API) for inputting data from external data sources of various types: tables, texts and graphics. The Eidos system is an automated system, i.e. it assumes direct human participation in real time in the process of creating models and using them to solve problems of identification, forecasting, decision-making and research of the subject area by studying its model (automatic systems operate without such human participation);

- is one of the first and most popular domestic systems of personal-level artificial intelligence, i.e. it does not require the user to have special training in the field of artificial intelligence technologies and programming: there is an act of implementation of the Eidos system in 1987;

- really works, provides stable identification in a comparable form of the strength and direction of cause-and-effect relationships in incomplete, noisy, interdependent (non-linear) data of very high dimensionality of numerical and non-numerical nature, measured in different types of scales (nominal, ordinal and numerical) and in different units of measurement (i.e. does not impose strict requirements on data that cannot be met, but processes the data that is available);

- has a "zero entry threshold":

- contains a large number of intelligent local (i.e. supplied with the installation) and cloud educational and scientific Eidos applications (currently there are 31 and more than 411 of them, respectively;

- is in full open access for free, and with up-to-date source texts: open license: CC BY-SA 4.0, and this means that it can be used by anyone who wishes, without any additional permission from the original copyright holder – the author and developer of the Eidos system, Professor E.V. Lutsenko (note that the Eidos system was created entirely using only licensed instrumental software and there are 34 certificates of the Russian Patent Agency for it);

- is an "interpreter of intelligent models", i.e. on the one hand, it is an instrumental shell that allows one to create intelligent applications based on it without any programming configurator of statistical and system-cognitive models, and on the other hand, it is a run-time system or execution environment that ensures the operation of these intelligent applications in an adaptive mode.

- To master the Eidos system on your own, simply download it from the page: and install the full version of the system, and then in 1.3 mode download and install from the Eidos cloud one of the intelligent cloud Eidos applications and execute it, following the description of the application. Usually this is the readme.pdf file in the folder: c:\Aidos-X\AID_DATA\Inp_data. For studying it is better to choose the newest applications, the author of which is prof. E.V. Lutsenko. In addition, on the page. There are more than 300 one and a half hour video lessons (in Russian) and many other educational materials and examples of descriptions of intelligent Eidos applications.

- supports an on-line environment for knowledge accumulation and exchange, and is widely used throughout the world (Figure 2);

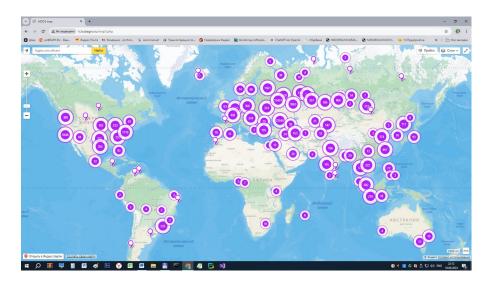


Figure 2 - Launches of the Eidos system in the world 9.12.2016 until 10.09.2024 DOI: https://doi.org/10.60797/IRJ.2024.148.90.2

- provides multilingual interface support in 51 languages. Language databases are included in the installation and can be replenished automatically;

- the most computationally intensive operations of model synthesis and recognition are implemented using a graphics processing unit (GPU), which in some tasks provides acceleration of the solution of these tasks by several thousand times, which really provides intelligent processing of big data, big information and big knowledge (the graphics processor must be on the NVIDIA chipset, i.e. support the OpenGL language);

- knowledge and solving problems using this knowledge identification, forecasting, decision support and research of the subject area by studying its system-cognitive model, generating a very large number of tabular and graphical output forms (development of cognitive graphics), many of which have no analogues in other systems (examples of forms can be seen in the work [14]);

- it imitates the human style of thinking well and is a tool for cognition: it gives results of analysis that are understandable to experts based on their experience, intuition and professional competence, if these experts already exist, and if they do not yet exist, it still gives correct results of cognition, which will be recognized by future experts when they appear;

- instead of imposing practically unrealistic requirements on the initial data (such as normal distribution, absolute accuracy and complete repetitions of all combinations of factor values and their complete independence and additivity), automated system-cognitive analysis (ASC-analysis) offers, without any preliminary processing, to comprehend the data that exists and, thereby, transform them into information, and then transform this information into knowledge by applying it to achieve goals (i.e., for decision-making and management) and solving problems of classification, decision support and meaningful empirical research of the modeled subject area.

There are medical software systems that accumulate medical databases on patient appointments at healthcare facilities, various patient characteristics, treatment methods used, and treatment results.

However, these medical databases always differ in form from the standards adopted by a particular intelligent software system. Therefore, in order to integrate an intelligent system into a medical software system, it was necessary to develop an automated software interface between medical databases and an artificial intelligence system, and such an interface was developed by the authors (Figures 3 and 4).

€ (С*) Подготовка исходных данных для АСК-анализа лечения желчнокаменной болезни	—		×
Задайте режим (последующие режимы можно задавать только после выполнения предыдущих)			
1. Конвертация Б.Д.: "Inp_data_2016_2018.xisx", "Inp_data_2019_2021.xisx", "Inp_data_2022_2024.xisx" и "Operation_2016_	2024.xls:	х'' в dbf	
2. Формирование предварительной объединенной БД обращений: "Patient_pre.DBF"			
3. Формирование БД обращений: "Patient_pre_tmp.DBF" и пациентов: "Patient.DBF" для ввода в систему "Эйи	10C''		
Исполнение режимов 1-2-3 по очереди один за другим			
Вставка наименований результатов лечения, диагнозов и учреждений здравоохранения в справочники системы	"Эйдос"	•	
<u>Qk</u> <u>Cancel</u>			

Figure 3 - Graphical user interface (GUI) of the preliminary API between medical databases of special medical software and the standard interface for inputting external tabular data into the Eidos intelligent system DOI: https://doi.org/10.60797/IRJ.2024.148.90.3

Figure 4 - Place of the preliminary API in the structure of integration of the intelligent system "Eidos" into the system of special medical software DOI: https://doi.org/10.60797/IRJ.2024.148.90.4

To use the program, you need to save it to the folder where the executable module of the Eidos system is located. You also need to save the medical databases of the source data, uploaded by the medical system to MS Excel files, to the same folder. In our case, these are the files:

 ∎Имя	Тип	Размер	Дата	Атрибуты
🏦 []		<Папка>	30.08.2024 09:19	
	xlsx	54 415 042	28.08.2024 08:11	-a
Inp_data_2019_2021	xlsx i	123 798 101	28.08.2024 08:15	-a
Inp_data_2022_2024	xlsx 1	124 105 284	28.08.2024 08:17	-a
Operation_2016_2024	xlsx	5 030 736	28.08.2024 08:19	-a

Figure 5 - MS Excel files DOI: https://doi.org/10.60797/IRJ.2024.148.90.5

These files contain information on patient visits to healthcare institutions in Krasnodar Krai for the period 2016-2024, i.e. for a period of 8 years. Information for 2024 will be updated as it appears in medical databases. All initial data is anonymized.

The first file contains information on appeals to healthcare institutions by patients who underwent surgery during the period 2016-2024.

The following files contain information on visits to healthcare institutions by non-operated patients for different periods: 2016-2018, 2019-2021 and 2022-2024.

Some quantitative parameters of the initial data for Krasnodar Krai for 2016-2024 are given below. The number of visits of non-operated patients to healthcare institutions in 2016-2018: 273,222 people; in 2019-2021: 531,733 people; in 2022-2024: 525,155 people; the number of visits of operated patients to healthcare institutions in 2016-2024: 54,967 people.

Total number of patient visits to healthcare institutions in 2016-2024: 1,385,077 visits. This number of visits exceeds the capacity of MS Excel for the number of rows in one sheet, which cannot exceed 1,048,576 rows. This is the main reason why medical databases are downloaded into several Excel files containing data for certain periods of 2 years.

Total number of patients in 2016-2018: 409,684. Number of different diagnoses in patients in 2016-2024: 983. Number of different healthcare institutions that patients visited in 2016-2024: 140.

All source data files are identical in structure and contain information on the following indicators:

Table 1 - Indicators

DOI: https://doi.org/10.60797/IRJ.2024.148.90.6

ID	MK BX	MK B_N AM E	POL	DAT R	DAT N	AGE	Treat ment	Oper ation	REG ION	COD E_U R	NA ME_ URL	ISX ODL
----	----------	----------------------	-----	----------	----------	-----	---------------	---------------	------------	-----------------	------------------	------------

These initial data are already marked up, since they contain not only indicators describing the patient's condition for each visit to a healthcare facility and the treatment methods used, but also information about the outcome of the treatment. A fragment of a real Excel file of source data for 2016-2018 is given below:

Dinp_data_2	016_2018.ru.en.xbx ×										
A B	с	D	E	F	G	н	1	J	К	L	M
1 ID MKBX	* MKB_NAME *	PO -	datr 👻	DATN -	Age -	Treatment -	Operation -	Region 👻	CODE_Ur -	NAME_URL *	isxodl ~
2 1 K86.1	Other chronic pancreatitis	F	15.02.1974	04.09.2017	43	2017 r.	N	The city of Krasnodar	07099	State Budgetary Healthcare Institution	4/8-no change
3 2 K86.0	Chronic pancreatitis of alcoholic etiology	F	18.04.1938	24.09.2017	79	2017 r.	N	City of Armavir	02501	GBUZ "SSMP of Armavir" Ministry of He	7/8-improvement
4 3 K86.9	Disease of pancreas, unspecified	F	12.07.1959	18.09.2017	58	2017 r.	N	Bryukhovetsky district	19032	State Budgetary Healthcare Institution	8/8-recovery
5 4 K86.9	Disease of pancreas, unspecified	F	17.04.1973	14.09.2017	44	2017 r.	N	Kushchevsky district	30009	State Budgetary Healthcare Institution	6/8-remission
6 5 K86.9	Disease of pancreas, unspecified	F	22.08.1998	26.09.2017	19	2017 r.	N	Resort town of Anapa	01028	MBUZ "Outpatient clinic No. 7"	5/8-inspection
7 6 K86.1	Other chronic pancreatitis	F	21.09.1927	27.09.2017	90	2017 r.	N	Resort town of Anapa	01031	MBUZ "District Hospital No. 3"	6/8-remission
8 7 K86.1	Other chronic pancreatitis	F	18.07.1956	28.08.2017	61	2017 r.	N	The city of Krasnodar	07099	State Budgetary Healthcare Institution	
9 8 K86.1	Other chronic pancreatitis	F		23.08.2017		2017 r.	N	The city of Krasnodar	07099	State Budgetary Healthcare Institution	
10 9 K86.1	Other chronic pancreatitis	F		15.09.2017		2017 r.	N	The city of Krasnodar	07099	State Budgetary Healthcare Institution	4/8-no change
11 10 K86.1	Other chronic pancreatitis	F	24.09.1954	15.09.2017	62	2017 r.	N	Labinsky district	10022	State Budgetary Healthcare Institution	2/8-worsening
12 11 K86.1	Other chronic pancreatitis	F		15.09.2017		2017 r.	N	Labinsky district	10022	State Budgetary Healthcare Institution	
13 12 K86.1	Other chronic pancreatitis	M		25.09.2017		2017 r.	N	Leningradsky district	31004	State Budgetary Healthcare Institution	5/8-inspection
14 13 K86.1	Other chronic pancreatitis	M		21.08.2017		2017 r.	N	Leningradsky district	31004	State Budgetary Healthcare Institution	5/8-inspection
15 14 K86.1	Other chronic pancreatitis	M		19.09.2017		2017 r.	N	Timashevsky district	42515	CHUZ "RZD-Medicine" Timashevsk"	4/8-no change
16 15 K86.1	Other chronic pancreatitis	M		14.09.2017		2017 r.	N	Ust-Labinsk district	45014	State Budgetary Healthcare Institution	
17 16 K86.9	Disease of pancreas, unspecified	F		04.09.2017		2017 r.	N	Ust-Labinsk district	45014	State Budgetary Healthcare Institution	
18 17 K86.1	Other chronic pancreatitis	M	17.02.1993	15.09.2017	24	2017 r.	N	Ust-Labinsk district	45014	State Budgetary Healthcare Institution	
19 18 K86.1	Other chronic pancreatitis	F		11.09.2017		2017 r.	N	Shcherbinovsky district	47003	State Budgetary Healthcare Institution	
20 19 K86.9	Disease of pancreas, unspecified	F		13.09.2017		2017 r.	N	Starominsky district	39010	State Budgetary Healthcare Institution	7/8-improvement
21 20 K86.1	Other chronic pancreatitis	F	06.08.1964	20.09.2017	53	2017 r.	N	Bryukhovetsky district	19032	State Budgetary Healthcare Institution	8/8-recovery
22 21 K86.1	Other chronic pancreatitis	F	26.08.1960	25.09.2017	57	2017 r.	N	Bryukhovetsky district	19032	State Budgetary Healthcare Institution	8/8-recovery
23 22 K86.1	Other chronic pancreatitis	F		21.09.2017		2017 r.	N	Bryukhovetsky district	19032	State Budgetary Healthcare Institution	8/8-recovery
24 23 K86.1	Other chronic pancreatitis	F	07.08.1957	20.09.2017		2017 r.	N	Kurganinsky district	29001	State Budgetary Healthcare Institution	5/8-inspection
25 24 K86.1	Other chronic pancreatitis	M		15.09.2017		2017 r.	N	Yeisk district	06008	State Budgetary Healthcare Institution	8/8-recovery
26 25 K86.1	Other chronic pancreatitis	F		12.09.2017		2017 r.	N	Yeisk district	06008	State Budgetary Healthcare Institution	
27 26 K86.1	Other chronic pancreatitis	F		05.09.2017		2017 r.	N	Shcherbinovsky district	47003	State Budgetary Healthcare Institution	
28 27 K86.9	Disease of pancreas, unspecified	F	27.11.1963	04.09.2017	53	2017 r.	N	Kushchevsky district	30009	State Budgetary Healthcare Institution	6/8-remission
29 28 K86.1	Other chronic pancreatitis	M	26.04.1970	21.08.2017		2017 r.	N	Kushchevsky district	30009	State Budgetary Healthcare Institution	
30 29 K86.1	Other chronic pancreatitis	F	11.01.1959	20.09.2017	58	2017 r.	N	Kushchevsky district	30009	State Budgetary Healthcare Institution	6/8-remission
31 30 K86.1	Other chronic pancreatitis	M		09.09.2017		2017 r.	N	Kushchevsky district	30009	State Budgetary Healthcare Institution	
32 31 K86.1	Other chronic pancreatitis	F		02.09.2017	26	2017 r.	N	Kushchevsky district	30009	State Budgetary Healthcare Institution	
33 32 K86.8	Other specified diseases of pancreas	M		27.09.2017		2017 r.	N	Otradnensky district	35008	State Budgetary Healthcare Institution	
34 33 K86.9	Disease of pancreas, unspecified	F	25.11.1980	20.09.2017	36	2017 r.	N	Starominsky district	39010	State Budgetary Healthcare Institution	7/8-improvement
35 34 K86.1	Other chronic pancreatitis	F		18.09.2017		2017 r.	N	Kurganinsky district	29001	State Budgetary Healthcare Institution	
36 35 K86.1	Other chronic pancreatitis	F	27.11.1963	18.09.2017	53	2017 r.	N	The city of Krasnodar	07095	State Budgetary Healthcare Institution	5/8-inspection

Figure 6 - A fragment of a real Excel file of source data for 2016-2018 DOI: https://doi.org/10.60797/IRJ.2024.148.90.7

Let's briefly review the purposes of the preliminary API modes. First mode called by clicking on the button:

1. Конвертация Б.Д.: "Inp_data_2016_2018.xlsx", "Inp_data_2019_2021.xlsx", "Inp_data_2022_2024.xlsx" и "Operation_2016_2024.xlsx" в dbf

Figure 7 - First mode calling button DOI: https://doi.org/10.60797/IRJ.2024.148.90.8

and provides downloading of all source data files in turn and their conversion into dbf database standard used in the Eidos system. The resulting database files are:

 • Имя	Тип	Размер	Дата	Атрибуты
🏦 []		<Папка>	30.08.2024 09:18	
Inp_data_2016_2018	DBF	846 715 461	28.08.2024 21:47	-a
Inp_data_2019_2021	DBF1	647 841 050	28.08.2024 21:50	-a
Inp_data_2022_2024	DBF1	627 455 828	28.08.2024 21:53	-a
Operation_2016_2024	DBF	156 326 599	28.08.2024 21:54	-a

Figure 8 - The resulting database DOI: https://doi.org/10.60797/IRJ.2024.148.90.9

Second mode called by clicking on the button:

Figure 9 - Second mode calling button DOI: https://doi.org/10.60797/IRJ.2024.148.90.10

and combines all the databases obtained in the previous mode into one database: Patient_pre.DBF. A fragment of this database in DBF Commander is given below:

	А	В	С	D	E	F	G	н	l. I	J	К
1	NUMBER	ID	MKBX	Ρ	DATR	AGE	TREATM	OPE	REGION	CODE_U	ISXODL
2	1	120186	K86.1	А	15.02.1974	43	2017	N	The city of Krasnodar	07099	4/8-no change
3	2	146543	K86.0	Α	18.04.1938	79	2017	Ν	City of Armavir	02501	7/8-improvement
4	3	98703	K86.9	Α	12.07.1959	58	2017	Ν	Bryukhovetsky district	19032	8/8-recovery
5	4	138704	K86.9	Α	17.04.1973	44	2017	Ν	Kushchevsky district	30009	6/8-remission
6	5	183365	K86.9	A	22.08.1998	19	2017	N	Resort town of Anapa	01028	5/8-inspection
7	6	175190	K86.1	A	21.09.1927	90	2017	N	Resort town of Anapa	01031	6/8-remission
8	7	148814	K86.1	A	18.07.1956	61	2017	Ν	The city of Krasnodar	07099	4/8-no change
9	8	19614	K86.1	Α	03.01.1962	55	2017	Ν	The city of Krasnodar	07099	4/8-no change
10	9	253485	K86.1	Α	10/31/1962	54	2017	Ν	The city of Krasnodar	07099	4/8-no change
11	10	200021	K86.1	Α	24.09.1954	62	2017	Ν	Labinsky district	10022	2/8-worsening
12	11	0	K86.1	Α	24.09.1954	62	2017	Ν	Labinsky district	10022	7/8-improvement
13	12	332171	K86.1	≤	15.12.1972	44	2017	Ν	Leningradsky district	31004	5/8-inspection
14	13	266228	K86.1	M	03.01.1958	59	2017	Ν	Leningradsky district	31004	5/8-inspection
15	14	272937	K86.1	M	04.05.1959	58	2017	Ν	Timashevsky district	42515	4/8-no change
16	15	329534	K86.1	N	15.06.1970	47	2017	Ν	Ust-Labinsk district	45014	8/8-recovery
17	16	162999	K86.9	Α	20.03.1988	29	2017	Ν	Ust-Labinsk district	45014	7/8-improvement
18	17	338198	K86.1	≤	17.02.1993	24	2017	Ν	Ust-Labinsk district	45014	5/8-inspection
19	18	143505	K86.1	Α	17.11.1970	46	2017	Ν	Shcherbinovsky district	47003	7/8-improvement
20	19	92913	K86.9	Α	11.11.1951	65	2017	Ν	Starominsky district	39010	7/8-improvement
21	20	49323	K86.1	A	06.08.1964	53	2017	N	Bryukhovetsky district	19032	8/8-recovery
22	21	216231	K86.1	Α	26.08.1960	57	2017	Ν	Bryukhovetsky district	19032	8/8-recovery
23	22	162710	K86.1	Α	20.03.1960	57	2017	N	Bryukhovetsky district	19032	8/8-recovery
24	23	57359	K86.1	Α	07.08.1957	60	2017	N	Kurganinsky district	29001	5/8-inspection

Figure 10 - A fragment of database in DBF Commander DOI: https://doi.org/10.60797/IRJ.2024.148.90.11

It is important to note that this file has 1,385,077 lines, which already exceeds the capabilities of MS Excel. Third mode called by clicking on the button:

3. Формирование Б.Д. обращений: "Patient_pre_tmp.DBF" и пациентов: "Patient.DBF" для ввода в систему "Эйдос"

Figure 11 - Third mode calling button DOI: https://doi.org/10.60797/IRJ.2024.148.90.12

This mode performs many functions:

1. Logically sorts the Patient_pre.DBF database of requests by unique patients. It is considered that rows with data on patient requests to healthcare institutions contain data on the same patient if the gender, date of birth and region of the patient's request match in these rows.

2. The Patient.DBF patient database is formed, in which each line corresponds to one patient. A fragment of this database in DBF Commander is shown below:

NUMBER				MKBX		YEARBIRTH		TREATMENT			OPERATION	RESULT
	01.01.1923			1 K86_0			698	2021		23001	N	7
121301	01.01.1923	2		1 K86_1			095	2018			N	4
495323	01.01.1923	3		1 K86_9	F	1923	096	2019	Kurganinsky_district	29001	N	7
709274	01.01.1924	4		2 K86_1 K86_1	FF	1924	097 097	2021 2021	City_Krasnodar	07087 07087	N.N.	45
399097	01.01.1925	5		K86_9 K86_9 K86_9 K86_9	FFFF	1925	094 096 096 096	2019 2021 2021 2021	Resort city_Sochi	13571 13571 13571 13571	NNNNN	3777
84133	01.01.1925	6		1 K86_9	F	1925	093	2018	Kavkazskiy_district	23519	N	7
175901	01.01.1925	7		2 K86_1 K86_1	FF		093 093	2018 2018	Korenovsky_district	26001 26001	N.N.	77
374126	01.01.1925	8		1 K86_9	F	1925	094	2019	Tuapse_district	15001	N	4
105428	01.01.1926	9		1 K86 9	F	1926	092	2018	City_Armavir	02501	N	3
28634	01.01.1926	10	1	1 K86_1	F	1926	091	2017	City_Krasnodar	07087	N	8
1153705	01.01.1926	11		1 K86_1	F	1926	097	2023	Kavkazskiy_district	23001	N	7
262245	01.01.1926	12		1 K86 1	F	1926	092	2018	Pavlovsky district	36011	N	5
485912	01.01.1927	13		3 K86 1 K86 1 K86 9	FFF	1927	092 092 092	2019 2019 2019	City Armavir	02501 02503 02503	NNN	447
946231	01.01.1927	14		2 K86 9 K86 9	FF	1927	095 096	2022 2023	Resort town Anapa	01527 01527	N.N.	37
910705	01.01.1927	15		2 K86 1 K86 9	FF	1927	095 096	2022 2023	Labinsky district	10022 10022	N.N.	57
22065	01.01.1928	16		K86 0 K86 1 K86 1 K86 9	FFFF	1928	089 089 091 093	2017 2017 2019 2021	City Armavir	02501 02503 02503 02503	NNNN	4477
1365	01.01.1928	17		3 K86 1 K86 1 K86 1	FFF	1928	089 090 092	2017 2018 2020	City Krasnodar	07081 07089 07089	NNN	457
274868	01.01.1928	18		1 K86 1 K86 9 K86 9 K86 9	FFFF	1928	093 093 094 095	2021 2021 2022 2023	Resort town Anapa	01527 01527 01527 01527	NNNN	3777
359611	01.01.1928	19		2 K86 1 K86 1	FF	1928	091 091	2019 2019	Resort city Sochi	13003 13003	N.N.	77
118693	01.01.1928	20		1 K86 9	F	1928	090	2018	Kavkazskiy district	23519	N	7
57716	01.01.1928	21		2 K86 1 K86 9	FF	1928	089 091	2017 2019	Tbilisi district	40005 40005	N.N.	77
416674	01.01.1929	22		1 K86 1	F	1929	090	2019	Dinskoy district	22001	N	7
27999	01.01.1929	23		5 K86 1 K86 1 K86 1 K86 1 K86 1 K86 1	FFFFFF	1929	088 089 089 092 093 094	2017 2018 2018 2021 2022 2023	City Krasnodar	07001 07089 07091 07091 07091 07091	NNNNN	445555
207117	01.01.1929	24		5 K86 9 K86 9 K86 9 K86 9 K86 9	FFFFF	1929	089 091 091 092 092	2018 2020 2020 2021 2021	Resort town Anapa	01527 01527 01527 01527 01527	NNNNN	45555
135716	01.01.1929	25		1 K86 9 K86 9 K86 9 K86 9	FFFF	1929	089 090 094 095	2018 2019 2023 2024	Yeisk district	05008 05008 05008 05008	NNNNN	7777
350572	01.01.1929	26		1 K86 9	F	1929	090	2019	Kavkazskiy district	23519	N	7
910092	01.01.1929	27		2 K86 1 K86 1	FF	1929	093 094	2022 2023	Novopokrovsky district	34001 34001	N.N.	66
580673	01.01.1929	28		2 K86 1 K86 1	FF	1929	091 094	2020 2023	Uspensky district	46010 46010	N.N.	57
194200	01.01.1930	29		2 K86 1 K86 1	FF	1930	088 088	2018 2018	Otradnensky district	35008 35008	N.N.	77
633330	01.01.1930	30		1 K86 9	F	1930	090	2020		47003	N	7
429895	01.01.1930	31		2 K86 1 K86 9	FF	1930	089 092	2019 2022	Beloglinsky district	18001 18001	N.N.	57
24802	01.01.1930	32		1 1086 1	F	1930	087	2017		02503	N	5
	01.01.1930	33		1 K86 1	F	1930	089	2019		07034	N	5
	01.01.1930	34		K86 1 K86 1 K86 1 K86 1 K86 1 K86 1 K86	FFFFFFF	1930	088 088 090 091 091 091 091 091	2018 2018 2020 2021 2021 2021 2021 2021	Resort town Anapa	01026 01026 01527 01527 01527 01527 0	NNNNNNN	3445555
	01.01.1930	25		8 K86 0 K86 1 K86 1 K86 1 K86 1 K86 9 K86			088 088 090 090 090 090 091 093	2018 2018 2020 2020 2020 2020 2021 2023		13003 13003 13008 13034 13039 13041 1	NNNNNNN	3457777

Figure 12 - A fragment of database in DBF Commander DOI: https://doi.org/10.60797/IRJ.2024.148.90.13

This database contains 409,684 records containing all data on 409,684 patients who, in 2016-2024, 1,385,077 applied to healthcare institutions in Krasnodar Krai.

In the Patient.DBF database, all patients are assigned unique conditional identification numbers ID.

3. The Patient_pre.DBF database is physically sorted by unique patient requests. The result is the Patient_pre_tmp.DBF database.

4. In the Patient_pre_tmp.DBF database of requests, patient IDs from the Patient.DBF database are entered. Based on this database, a database is created: Inp_data2.DBF (a fragment is given below), completely ready for input into the Eidos system using its standard data input interface API-2.3.2.2:

NUMBER	MKBX	POL	YEARBIRTH	AGE	TREATMENT	OPERATION	REGION	CODE_UR	RESULT
724417	K86.0	F	1923	098 years	2021	N	Kavkazsky district	23001	7/8-improvement
121301	K86.1	F	1923	095 years	2018	N	Kalininsky district	24009	4/8-no change
495323	K86.9	F	1923	096 years old	2019	N	Kurganinsky district	29001	7/8-improvement
709274	K86.1	F	1924	097 years	2021	N	The city of Krasnodar	07087	4/8-no change
726744	K86.1	F	1924	097 years	2021	N	The city of Krasnodar	07087	5/8-inspection
399097	K86.9	F	1925	094 years	2019	N	The resort city of Sochi	13571	7/8-improvement
730222	K86.9	F	1925	096 years old	2021	N	The resort city of Sochi	13571	3/8-no effect
730316	K86.9	F	1925	096 years old	2021	N	The resort city of Sochi	13571	7/8-improvement
730581	K86.9	F	1925	096 years old	2021	N	The resort city of Sochi	13571	7/8-improvement
84133	K86.9	F	1925	093 years	2018	N	Kavkazsky district	23519	7/8-improvement
175901	K86.1	F	1925	093 years	2018	N	Korenovsky district	26001	7/8-improvement
185821	K86.1	F	1925	093 years	2018	N	Korenovsky district	26001	7/8-improvement
374126	K86.9	F	1925	094 years	2019	N	Tuapse district	15001	4/8-no change
106428	K86.9	F	1926	092 years old	2018	N	City of Armavir	02501	3/8-no effect
28634	K86.1	F	1926	091 years	2017	N	The city of Krasnodar	07087	8/8-recovery
1153705	K86.1	F	1926	097 years	2023	N	Kavkazsky district	23001	7/8-improvement
262245	K86.1	F	1926	092 years old	2018	N	Pavlovsky district	36011	5/8-inspection
485912	K86.9	F	1927	092 years old	2019	N	City of Armavir	02501	7/8-improvement
489042	K86.1	F	1927	092 years old	2019	N	City of Armavir	02503	4/8-no change
497973	K86.1	F	1927	092 years old	2019	N	City of Armavir	02503	4/8-no change
946231	K86.9	F	1927	095 years	2022	N	Resort town of Anapa	01527	3/8-no effect
1321795	K86.9	F	1927	096 years old	2023	N	Resort town of Anapa	01527	7/8-improvemen
910705	K86.1	F	1927	095 years	2022	N	Labinsky district	10022	5/8-inspection

Figure 13 - Inp_data2.DBF fragment DOI: https://doi.org/10.60797/IRJ.2024.148.90.14

5. Based on the Patient.DBF database, a database is created: Inp_data.DBF (a fragment is given below), completely ready for input into the Eidos system using its standard data input interface API-2.3.2.2. Note that To input the initial data from the database: "Inp_data.DBF" into the Eidos system, you need to do the following:

1) copy "Inp_data.DBF" to the source data folder: "Aidos-X\AID_DATA\Inp_data\";

2) open "Inp_data.DBF" in MS Excel version no later than 2010 and save it with the name: "Inp_data.xlsx";

3) make the format of all cells: "Alignment-Wrap by words", format the table by the width of the columns and orientation of headings, make the names of the result columns vertical (this is optional, it is optional);

names:

4) Change the column "ID,N_OBR,MKBX,POL,DATR,AGE,TREATMENT,REGION,CODE_UR,OPERATION,RESULTS".

respectively, to the following: "Patient ID, Number of visits, MKBX, Gender, Year of birth, Age (years), Years of visits, Region, Healthcare institution, Operation, Results.

After this, you can enter this data into the Eidos system in mode 2.3.2.2 with the following parameters:

1. Input data file type: "Inp_data.xlsx" - XLSX MS Exel-2007(2010).

2. Range of columns of classification scales: initial column: 11, final column - 11.

7

- 3. Range of columns of descriptive scales: initial column: 2, final column: 10.
- 4. Zeros and spaces are considered ABSENCE of data.
- 5. Mode: formalization of the subject area.
- 6. Method for selecting the size of intervals: equal intervals with different numbers of observations.

7. Apply a special interpretation of text fields and classes and features: consider words, i.e. cell elements separated by a space, as field elements.

ID	N_OBR			YEARBIRTH			REGION		OPERATION	RESULT
1	1	K86_0	F						N	7
2	1	K86_1	F	1923	095	2018	Kalininsky_district	24009	N	4
3	1	K86_9	F	1923			Kurganinsky_district	29001	N	7
4	2	K86_1 K86_1	FF	1924	097 097	2021 2021	City_Krasnodar	07087 07087	N.N.	45
5	4	K86_9 K86_9 K86_9 K86_9	FFFF	1925	094 096 096 096	2019 2021 2021 2021	Resort city_Sochi	13571 13571 13571 13571	NNNNN	3777
6	1	K86_9	F	1925	093	2018	Kavkazskiy_district	23519	N	7
7	2	K86_1 K86_1	FF	1925			Korenovsky_district	26001 26001	N.N.	77
8	1	K86_9	F	1925	094	2019	Tuapse_district	15001	N	4
9	1	K86_9	F	1926	092	2018	City_Armavir	02501	N	3
10	1	K86_1	F	1926	091	2017	City_Krasnodar	07087	N	8
11	1	K86_1	F	1926	097	2023	Kavkazskiy_district	23001	N	7
12	1	K86_1	F	1926	092	2018	Pavlovsky_district	36011	N	5
13	3	K86_1 K86_1 K86_9	FFF	1927			City_Armavir	02501 02503 02503	NNN	447
14	2	K86_9 K86_9	FF	1927	095 096	2022 2023	Resort town_Anapa	01527 01527	N.N.	37
15	2	K86_1 K86_9	FF	1927	095 096	2022 2023	Labinsky_district	10022 10022	N.N.	57
16	4	K86 0 K86 1 K86 1 K86 9	FFFF	1928	089 089 091 093	2017 2017 2019 2021	City Armavir	02501 02503 02503 02503	NNNN	4477
17	3	K86 1 K86 1 K86 1	FFF	1928	089 090 092	2017 2018 2020	City_Krasnodar	07081 07089 07089	NNN	457
18	4	K86_1 K86_9 K86_9 K86_9	FFFF	1928	093 093 094 095	2021 2021 2022 2023	Resort town_Anapa	01527 01527 01527 01527	NNNNN	3777
19	2	K86_1 K86_1	FF	1928	091 091	2019 2019	Resort city_Sochi	13003 13003	N.N.	77
20	1	K86 9	F	1928	090	2018	Kavkazskiy district	23519	N	7
21	2	K86_1 K86_9	FF	1928	089 091	2017 2019	Tbilisi_district	40005 40005	N.N.	77
22	1	K86 1	F	1929	090	2019	Dinskoy district	22001	N	7
23	6	K86 1 K86 1 K86 1 K86 1 K86 1 K86 1	FFFFFF	1929	088 089 089 092 093 094	2017 2018 2018 2021 2022	City Krasnodar	07001 07089 07091 07091 07091 07091	NNNNN	445555
24	5	K86 9 K86 9 K86 9 K86 9 K86 9	FFFFF	1929	089 091 091 092 092	2018 2020 2020 2021 2021	Resort town Anapa	01527 01527 01527 01527 01527	NNNNN	45555
25	4	K86_9 K86_9 K86_9 K86_9	FFFF	1929	089 090 094 095	2018 2019 2023 2024	Yeisk_district	06008 06008 06008 06008	NNNNN	7777
26	1	K86_9	F	1929	090	2019	Kavkazskiy_district	23519	N	7
27	2	K86 1 K86 1	FF	1929	093 094	2022 2023	Novopokrovsky district	34001 34001	N.N.	66
28	2	K86 1 K86 1	FF	1929	091 094	2020 2023	Uspensky district	46010 46010	N.N.	57
29	2	K86_1 K86_1	FF	1930	088 088	2018 2018	Otradnensky_district	35008 35008	N.N.	77
30	1	K86_9	F	1930	090	2020	Shcherbinovsky_district	47003	N	7
31	2	K86_1 K86_9	FF	1930	089 092	2019 2022	Beloglinsky_district	18001 18001	N.N.	57
32	1	K86_1	F	1930	087	2017	City_Armavir	02503	N	5
33	1	K86_1	F	1930	089	2019	City_Krasnodar	07094	N	5
34	8	K86_1 K86_1 K86_1 K86_1 K86_1 K86_1 K86_1	FFFFFF	1930	088 088 090 091 091 091 09	2018 2018 2020 2021 2021	Resort town_Anapa	01026 01026 01527 01527 01527 01527	NNNNNNN	344555
35	8	K86 0 K86 1 K86 1 K86 1 K86 1 K86 9 K86 9		1930	088 088 090 090 090 090 090 0	2018 2018 2020 2020 2020	Resort city, Sorbi	13003 13003 13008 13034 13039 13041	NNNNNNN	345777

Figure 14 - Inp_data2.DBF fragment into the Eidos system in mode 2.3.2.2 DOI: https://doi.org/10.60797/IRJ.2024.148.90.15

These initial data are already marked up, as they contain not only indicators describing the patient's condition in all of his visits to healthcare institutions and the treatment methods applied, but also information about the treatment outcomes for each visit.

Note that the created preliminary interface creates two resulting files: Inp_data2.DBF for creating models by requests, and Inp_data.DBF for creating models by patients. These models are consistent with each other. Also, a file is generated: Inp_data2.csv, containing the same data as Inp_data2.DBF, but more convenient for input in the API-2.3.2.2 mode of the Eidos system, since when entering it, a file of field names is automatically generated, which, when using Inp_data2.DBF, must be generated manually by the user. At the same time, the 2nd option allows you to specify field names in Russian.

The fourth mode called by clicking on the button:

Исполнение режимов 1-2-3 по очереди один за другим

Figure 15 - The fourth mode calling button DOI: https://doi.org/10.60797/IRJ.2024.148.90.16

and, as its name suggests, executes modes 1.2 and 3 sequentially one after the other, automatically, i.e. without user intervention, generating all output databases from the original Excel files.

At the end of the 3rd and 4th modes, a resulting window with explanations for the user is displayed:

🕑 (С) Система "Эйдос-Х++	a
Файлы исходных данных ("F	atient_pre_tmp.DBF'' и ''Inp_data.DBF'') для системы "Эйдос" сформированы успешно!
НЕКОТОРЫЕ ПАРАМЕТРЫ	ИСХОДНЫХ ДАННЫХ ПО КРАСНОДАРСКОМУ КРАЮ ЗА 2016-2024 ГОДЫ:
Количество обращений неог	терированных пациентов в учреждения здравоохранения в 2016-2018 годах: 273222
Количество обращений неог	перированных пациентов в учреждения здравоохранения в 2019-2021 годах: 531733
Количество обращений неог	терированных пациентов в учреждения здравоохранения в 2022-2024 годах: 525155
Количество обращений прос	перированных пациентов в учреждения здравоохранения в 2016-2024 годах: 54967
ВСЕГО количество обращен	ий пациентов в учреждения здравоохранения в 2016-2024 годах: 1385077
ВСЕГО пациентов за 2016-20	018 годы: 409684
Количество различных диаг	нозов у пациентов за 2016-2024 годы: 983
Количество различных учре»	кдений здравоохранения, в которые обращались пациенты в 2016-2024 годах: 140
Чтобы ввести исходные дан	ные из базы данных: "Inp_data.DBF" в систему "Эйдос" нужно сделать следующее:
1) скопировать "Inp_data.DB	F'' в папку для исходных данных: "Aidos:X\AID_DATA\Inp_data\",
2) открыть "Inp_data.DBF" в	MS Excel версии не позднее 2010 года и сохранить его с именем: "Inp_data.xlsx",
3) сделать формат всех ячее	ек: "Выравнивание-Переносить по словам", отформатировать таблицу по ширине колонок и
ориентации заголовков, и	мена колонок результатов сделать вертикально, (этого можно не делать, это по желанию),
4) Поменять наименования	колонок: "ID,N_OBR,MKBX,POL,DATR,AGE,TREATMENT,REGION,CODE_UR,OPERATION,RESULTS",
соответственно, на следую	ощие: "ID пациента,Число обращений,МКВХ,Пол,Год рождения,Возраст (лет),Годы обращений,
Регион, Учр. здравоохранен	ния, Операция, Результаты,
После этого можно в режим	е 2.3.2.2 вводить эти данные в систему "Эйдос" со следующими параметрами:
1. Тип файла исходных данн	ых: "Inp_data.xlsx" - XLSX MS Exel-2007(2010).
2. Диапазон столбцов класс	зификационных шкал: начальный столбец: 11, конечный - 11.
3. Диапазон столбцов описа	ательных шкал: начальный столбец: 2, конечный - 10.
4. Нули и пробелы считать С	ТСУСТВИЕМ данных.
5. Режим: формализация пр	едметной области.
6. Способ выбора размера и	нтервалов: равные интервалы с разным числом наблюдений.
7. Применить спец.интерпре	атацию текстовых полей и классов, и признаков: в качестве элементов полей считать слова.
Эта информация есть в фай	ne: "InformationTigay.txt"
	Qk

DOI: https://doi.org/10.60797/IRJ.2024.148.90.17

Fifth mode called by clicking on the button:

Вставка наименований результатов лечения, диагнозов и учреждений здравоохранения в справочники системы "Эйдос"

Figure 17 - Fifth mode calling button DOI: https://doi.org/10.60797/IRJ.2024.148.90.18

Inserts into the reference books of the Eidos system and into the gradations of classification and descriptive scales the names of treatment outcomes, as well as the names of diagnoses and health care institutions from the reference books specially created for this purpose, created at the previous stages of inputting the initial data. As a result, the output forms of the Eidos system will be much more convenient for perception and meaningful professional interpretation by a person. All the necessary explanations for the user's work in this mode are contained in it.

Conclusion

Thus, the preliminary software interface developed by the authors made it possible to integrate the intelligent Eidos system into the structure of special medical software and provided the ability for the Eidos system to use medical databases.

Конфликт интересов

Не указан. **Рецензия** Сообщество рецензентов Международного научноисследовательского журнала DOI: https://doi.org/10.60797/IRJ.2024.148.90.19

Conflict of Interest

None declared.

Review

International Research Journal Reviewers Community DOI: https://doi.org/10.60797/IRJ.2024.148.90.19

Список литературы на английском языке / References in English

1. Lutsenko E.V. Revolution of the early 21st century in artificial intelligence: deep mechanisms and prospects / E.V. Lutsenko, N.S. Golovin. — Krasnodar: Kuban State Agrarian University named after I.T. Trubilin, 2024. — 394 p. — DOI: 10.13140/RG.2.2.17056.56321.

2. Lutsenko E.V. November 30, 2022 – the birthday of the Earth's noosphere as a global intellectual system / E.V. Lutsenko, N.S. Golovin // Polythematic network electronic scientific journal of the Kuban State Agrarian University. — 2024. — № 200. — P. 67-114. — DOI: 10.21515/1990-4665-200-07.

3. Lutsenko E.V. Methodological principles of scientific knowledge and methods of presenting scientific results / E.V. Lutsenko, N.S. Golovin. — 2024. — DOI: 10.13140/RG.2.2.32569.79203.

4. Hurwitz J. Cognitive computing and big data analytics / J. Hurwitz, M. Kaufman, A. Bowles [et al.]. — Indianapolis: Wiley, 2015. — Vol. 288.

5. Heinze D.T. LifeCode: A deployed application for automated medical coding / D.T. Heinze, M. Morsch, R. Sheffer [et al.] // Ai Magazine. — 2001. — № 22(2). — P. 76-76.

6. Pramanik P.K.D. Beyond automation: the cognitive IoT. artificial intelligence brings sense to the Internet of Things / P.K.D. Pramanik, S. Pal, P. Choudhury // Cognitive Computing for Big Data Systems Over IoT: Frameworks, Tools and Applications. — 2018. — P. 1-37.

7. Ogiela L.D. Cognitive information systems in management sciences / L.D. Ogiela. — Morgan Kaufmann, 2017.

8. Trimble T.E. Human factors evaluation of level 2 and level 3 automated driving concepts: Past research, state of automation technology, and emerging system concepts / T.E. Trimble, R. Bishop, J.F. Morgan [et al.]. — 2014.

9. Pongsakornsathien N. Sensor networks for aerospace human-machine systems / N. Pongsakornsathien, Y. Lim, A. Gardi [et al.] // Sensors. — 2019. — № 19 (16). — P. 3465.

10. Shi J. Mapping the bibliometrics landscape of AI in medicine: methodological study / J. Shi, D. Bendig, H.C. Vollmar [et al.] // Journal of Medical Internet Research. — 2023. — № 25. — P. e45815.

11. Ienca M. Intelligent assistive technology for Alzheimer's disease and other dementias: a systematic review / M. Ienca, J. Fabrice, B. Elger [et al.] // Journal of Alzheimer's Disease. — 2017. — № 56 (4). — P. 1301-1340.

12. Handbook of human factors testing and evaluation / Ed. by S.G. Charlton, T.G. O'Brien. — CRC Press, 2019.

13. Linja A. Explicit Rule Learning: A Cognitive Tutorial Method to Train Users of Artificial Intelligence/Machine Learning Systems / Linja Anne. — 2023.

14. Margetis G. Human-centered design of artificial intelligence / G. Margetis, S. Ntoa, M. Antona [et al.] // Handbook of human factors and ergonomics. — 2021. — P. 1085-1106.

15. Choe Y.K. The effect of home computer practice on naming in individuals with nonfluent aphasia and verbal apraxia / Y.K. Choe, T. Azuma, P. Mathy [et al.] // Journal of Medical Speech-Language Pathology. — 2007. — № 15 (4). — P. 407-422.