International Research Journal = Ne 6 (144) = June

JNOOEPEHIINAJ/IBHBIE YPABHEHU A 1 MATEMATHUYECKASA ®U3WKA / DIFFERENTIAL EQUATIONS,
DYNAMICAL SYSTEMS AND OPTIMAL CONTROL

DOI: https://doi.org/10.60797/IRJ.2024.144.3

CONTROLLER SYNTHESIS FOR A STATE-CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY
ALAPLACE EQUATION

Research article

Sugak D.V." *
'ORCID : 0000-0002-5405-5360;
! Saint-Petersburg State University of Aerospace Instrumentation, Saint-Petersburg, Russian Federation

* Corresponding author (dima_sou[at]mail.ru)

Abstract

This article is concerned with an optimal control problem governed by a Laplace equation. Initially, the optimal control
problem, governed by a system of partial differential elliptic equations of the second order, is considered. The case of a system,
that is singular according to Lions, is considered. In this system a given control may give rise to either no of any state or, on the
contrary, the infinitely many ones or that to a single but unstable state [1]. In this situation, the application of the classic
optimal control theory is either very difficult or impossible. Special methods applicable to the control problems, governed by
singular distributed systems, are developed in the works of Zh. L. Lions, I. Ekland, P. Marselini, G. Mossino, P. Rivera, and of
many other authors. But it should be noted that in most of these works the simplest problem statement is discussed. It is
defined by the fact that the set of admissible processes, i.e., the processes, among which we seek the minimum of certain
functional, is described by a differential equation and the connected with it, boundary conditions only. In the present work a
more general and complex case is considered, namely, the case that in the description of the above-mentioned set there are so-
called state constraints. This implies that the phase vector of a system does not leave the given set. In such a statement the
optimal control problem, governed by a distributed singular system, is, undoubtedly, of substantial interest. Next it will be
shown that the optimal process in this problem is generated by a nonlinear optimal controller and its equation will be obtained.
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AHHOTa M

CraTtbsi TOCBsilIleHa 3ajjaue ONTHMAJbHOTO YIIPaBleHHs OOBEKTOM, TOBeZileHHe KOTOPOTO OIMMCHIBAeTCS YypaBHEHWEM
Jlarmaca. B Hauasme paccMarpvBaeTcsi 3ajlaua ONTHMAJIBHOIO YIIPaBIeHWs CHUCTeMOM AuddepeHMaIbHBIX YpaBHEHUH B
YaCTHBIX NTPOM3BOJHBIX JIIMIITUYECKOr0 TUI1a BTOPOro nopsjka. MccaesoBaH cilydyail Tak Ha3bIBaeMOW CHUHTY/ISIDHOM CHCTEMBbI
[1]. B Takoii crucTeme 3a/jJaHHOMY YIIPaB/IEHUIO MOXKET He COOTBETCTBOBATh HUKAKOe COCTOsSIHUE YIIpaB/sieMoro o6beKTa, 1bo,
HalpoOTUB, TAKUX COCTOSHUI MOXKeT ObITh 6@CKOHEYHO MHOT0, JIM00 COCTOSIHHE MOYKeT ObITh TOJIBKO OIHO, HO HeycToiunBoe. B
TaKOW CUTYaLX IPUMeHeHHe K/IacCUUeCcKoi TeOpUH ONTHMA/IbHOTO YIIpaB/ieHHsl OKa3bIBaeTCs MO0 OueHb 3aTPYLHUTE/ILHBIM,
mibo BooOuje HeBO3MOXKHbIM. Crieljiaj/ibHble MeTOAbl, TIpUMeHHMble K 33jadaM yIpaBjieHWs CHHIY/ISIPHBIMU
pacrpe/ieieHHbIMU CUCTeMaMu ObUTN pa3BuThl B pabotax JK.JI. JTuoHca, U. Dknanpa, I1. Mapcenunu, K. Moccuto, I1. Pusepa
U MHOTHMX [pyruxX aBTOpPoB. OfHAKO CTOWT 3aMeTWUTh, UTO B IOAAB/SIOLIEM OOJBIIMHCTBE 3THX PabOT pacCMaTpUBAETCs
TpocTelilias MoCTaHOBKa 3aaud. OHa XapakTepusyeTcsl TeM, YTO MHOXXECTBO JIOMYCTUMBIX MPOLIECCOB, TO €CTh MPOL[ECCOB,
Cpeii KOTODPBIX MILETCS MWHAMYM HEKOTOPOro (yHKLMOHAasa, OTMMCBIBAeTCsl TOMBKO AviddepeHLManbHBIM yYpaBHEHHEM U
CBSI3aHHBIMM C HUM I'PaHUYHBIMU yC/I0BUsIMU. B Hacrtosimeli pabote paccMoTpeH 6omee 06U U C/IOKHBIN C/Tydaili, a UMEHHO,
C/lydaii, Koria B OMMCAHUM YIIOMSIHYTOTO MHOKeCTBa MPUCYTCTBYIOT Tak HasblBaeMble (a3oBble orpaHuueHusi. OHU TpeOyloT,
9ToOBI (ha30BbIN BEKTOpP CUCTEMBI He MIOKHUZAM 3a/JaHHOTO MHOYKECTBA. B Takoi 1ocTaHOBKe 3ajlaua ONTHMAIbHOTO YIIPaBIeHHs
CUHTY/ISIDHON pacripefie/ieHHON CHUCTeMO#, HeCOMHEHHO, TIpe/ICTaB/isieT 3HauWTe/lbHbI UHTepec. B cTaTbe IoKa3aHo, UTO
ONTHMaJILHBIM MPOLieCC B JAHHOM 3a/jaue MOpOoyKAaeTcsl HeJIMHeMHbIM ONTUMa/bHBIM Pery/lITOPOM U MIOTy4YeHO ero ypaBHeHue.

KiroueBbie c/10Ba: puHLMI MakcuMyMa [ToHTpsirvHa, ypaBHeHMe Jlarnaca, ONTUMaIbHbBIN PeryssiTop.

Introduction

Recent decades have witnessed a sustained interest to the maximum principle of Pontryagin’s type for optimal control
problems governed by partial differential equations; see e.g., [3], [4], [5] and the literature therein. The introducing of state
constraints into the problem formulation has earned the additional difficulties and increasing complexity, whereas such
constraints are relevant to many applications [6], [7], [8]. The optimal control theory of PDE’s offers an extremely rich variety
of problems. Among them, there are optimal control problems with state constraints for plants described by Laplace equation.
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In this article, the optimal control problem governed by a Laplace equation is considered. This control system is the singular,
according to Lions [1].

The optimal control problem governed by a system of elliptic equations. The case of phase constraints
Let Q be an open bounded subset of R' with the Lipshitz boundary I, KCR™ be a nonempty set, and
fQx RP x K — RF - Consider the following system:

{ Ay = flxy(x),u(x)] u(x) € K,x € Q
ylr=0
where 4(.) = (Y(x) ())’il:] - QO — RP isastate, u(*) is a control, and A is an elliptic differential operator of the second

order: Ay(Yp(), where - p(x) = [pr(x)IL, » pr(x) = = Xf 1 55 [af) () FEIVk = L. bl € CO1(@) and

k —_ .
St a2 AEPYE€RLx € Q k=1, foracertain A>0.
Here CO,a(a)’ ae(0,1] is a space of all continuous in o) functions satisfying the Hoelder condition:

(1)

SUPy, 1, c0 W < oo - We consider controls ;(.) ¢ [*(Q — K) and will seek solutions of problem (1) in a

class H(; (Q - R - Recall that H(% (Q - R is a closure of set
C8° (Q N Rh) - {40() cC® (Q N Rh) co(x) =0 for x¢M, where MCint £ is compact set} in
H' (O — R = {(p(-) el*(Q—-RY: XY c12(Q R, i= 1,...,1} - The norm in gl _, Ry I
defined by the equality |(p()|i[1 = |(P()|% + Zé:l |8<p(-)/c9x,-|§ - Suppose that functions ;. phyx _, g and
g(-) = 1g:()|2 L Q xR" 5 R9 are given. Consider an optimal control problem:
i=

J(yw) = [, LIx,y(x), u(x)]dx — inf ©)

on the set D= {[y(-),u(-)] : y(-) € H! (Q — R") 0 €O« (Q — RM),u() € L¥(Q - R™) is  valid

and g (x,y(x)) <OVx e Q,i=1,...,q}

We also assume the following:

1. For almost all x€Q a function L(x,y,u) is continuous in (y,u) together with derivative 0L/0y. For all (y,u) the function
L(x,y,u) is measurable by x and for any r>0 for a certain (- )EL( Q - R) an estimate |L(x,y,u)|+|(OL(x,y,u))/dy|<a,(x) holds for
almost all x€Q and all y,u€K such that |y|<r, |u|<r.

2. For almost all x€Q a function f(x,y,u) is continuous in (y,u) together with derivative 0f/dy. For any (y,u) a function
f(x,y,u) is measurable by x. There exists s>I/(I-1) such that for any r for a certain B,(-)EL® (Q - R) the estimate |f(x,y,u)|+|
(Of(x,y,u))/0y|<B(x) is valid for almost all x€Q and any y,u€K such that |y|<r, |u|<r.

3. Functions gi(x,y) are continuous in ), together with derivative dg/0y and gi(x,0)<0 Vx€T, i=1,...,q.

Denote by M(Q) a space of all real regular Borel charges in Q. It can be identified with the dual to C°(Q2) space [9], where
CU(Q)={p()eC(Q) : ¢(x)=0 VYxel'}. Denote by a symbol Wy'° (Q-R"), o€[l,00), a closure of space Co* (2 -R") in

Who (Q - Rh) = {@(') €L?(Q - Rh): 8;”—;") €L’ (Q-RY,i=1,. ..,l} . In W' (Q - R") a norm [p(-)|=(|
0()|2+Y_i-1'|0p(-)/0xi|,) is considered.

Theorem 1.

Let hypotheses 1-3 be satisfied and (y’,u’) be an optimal process in problem (2). Then there exists a function
Y()EW(Q - R, where o<l/(I-1), the charges pi(dx)eM(Q),i=1,...,q and a number A°cR are such that

AY(x) = VH [x,3° (0,62 (0) | + L 1:(dx) Vygi [ 5°(0)] = 0,x € Q ®)
H [x,y°(x), u(x)] = maxyex H [x,y%(x), v] for almost all x € Q )
A% > 0, p;(dx) > 0, supp pi(dx) € {x: g; [x,y°(x)| =0}Vi=1,....q (5)
A0+ [ Iy (ldx + 2L, pi(Q) > 0 ©)

Here H[x,y,u]=¢"(x)f(x,y,u)-A’L(x,y,u) is a Hamiltonian function and A'y(x)=p(x), where p(x) = | Pk(x)|2—1 ,
pe(x) == Ty 2 [alP 092 | vk =1,

In (3) all the addends are considered as generalized functions [10]. This equation is of the elliptic type of the second order
with respect to y(:). The inclusion y(x)EW,"(Q — R") involves the validity of the homogeneous Dirichlet boundary condition
W|r=0. The equation (3) with measures p;(dx) was studied in [9]. Relation (1) implies that y°|-=0 and therefore condition 3
results in g; [x,y°(x)]<0 Vx€Ti=1,...,q. By inclusion (5) we have supp pi(dx)Cint Q Yi=1,...,q. The proof of Theorem 1 is
given in [2].

The optimal control problem governed by a Laplace equation. The case of phase constraints
Let n>2 and QCRR" be an open bounded subset. Consider the following optimal control problem:
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Ay=uy’ —ku>,u. <u<u,xeQ %)

ylr =0,y(x) < p(x)Vx € Q,fQ y(x)?dx — min 8)

where y=y(x)€ER is a state, u=u(x)€ER is a control, A — Laplace operator, numbers k>0,0<u_-<u_+ and a continuous
function @(x), xeQ are given. We choose controls u(-) in the class L*(Q) and look for the state y(*) in the class

Hg(ﬁ) N WH2(Q) » where a€(0,1). We assume that p(x) > 0¥x € Q

Let us explain the introduced notation. L?(Q) is the space of all functions y(:), summable with degree pe[1,2), defined on
the set Q and having finite norm 1y ()|, ;= /[ |y()|Pdx < eo,p € [1,00) > [y()]eo := esssup ly(x)] -

Hy*(Q) is the Banach space of continuous functions y(*), defined on Q, vanished on the boundary 0Q of the set Q and

having finite norm
YIS = maxq Jyl+ < y() >

ly(x")—y(x)| .

WO <y< 1

Let us now write down for problem (7), (8) the Pontryagin’s maximum principle formulated in Theorem 1.

Let [y(-),u(-)] be an optimal process in problem (7), (8). By Theorem 1 there is a function y(-)€W,"°(R2), a number v>0 and

a finite regular Borel measure (dx) > 0(x € ﬁ) are such that:

where < y() >J(Cyg)):: Supx’,x”EQ

u(x) = arg maxgefu_u,] Y(x) [wy(x)® — kw?| a.a. x € Q )

p(dx) = 0,supp p(dx) € {x € Q: y(x) = p(x)},0 2 0 (10)

v+ p(Q) + [ [Y(x)|dx > 0 (11)

Jo, ¥(x) [AR(x) = 3u(x)y? (x)h(x)]| dx + [, h(x)p(dx) + 20 [, h(x)y(x)dx = 0 (12)

Equality (12) holds for any function h(-)EH," ()nW"*(Q) for which Ah(:)EL*(Q). The notation z’=arg max,ezf(x) means
that the function f{(z) reaches its maximum on the set Z at the point z°.

Lemma 1.

The inequality y(x)>0 is valid VyeQ -

Proof of Lemma 1.

By the definition of generalized solution of the homogeneous Dirichlet problem [11] for the equation from (7) we have:

- /Q < Vy,Vh > dx = fQ u(x)y(x)3h(x)dx — ka u(x)?h(x)dx (13)

The equality (13) holds for any function h(*)€ Wy"4(Q). According to Lemma 12 ([12, II, 3]) h():=y_(x)EW_,"*(Q), where
y_(x)=min{y(x),0}. Let Q_={x€Q:y(x)<0} and Q":==Q\Q_={x€Q:y(x)=0}. It is easy to verify that y_ (x)=y(x), Vy_(x)=Vy(x)
a.ax€Q_,y (x)=0,Vy_(x)=0 a.a.x€Q".

Substituting h(*):=y_(*) into (13), we get

— o IVy_ ()P dx = [ u(x)y-(x)*dx —k [ u(x)?y_(x)dx

Since u(x)>u_>0 and y_(x)<0, then both terms on the right side are non-negative, while the expression on the left side is
not positive. Therefore, [o|Vy_(x)|* dx=0, and since y_(-)EW,"*(Q), then y_ (x)=0 and that means y(x)>0 for almost all x.
Recalling that y(-)€H,*(22), we come to the conclusion of the Lemma 1.

Remark 1.

Note that y(x)>0 at least at one point xeQ. Indeed, otherwise y(+)=0 and according to (7) 0=u(x)=u_, that is impossible due
to inequality u_>0.

The following auxiliary fact can be proved in a similar way.

Lemma 2.
Let a(*),f(-)EL*(2) and h(-) € W,"*(2) be the solution to the Dirichlet problem:
Ah(x) = a(x)h(x) + f(x), hlr =0 (14)
If a(x)=0 and f(x)<0 for almost all x€Q, then h(x) > OVx € Q.
Remark 2.

By the theorem 14.1 ([12, III, 14]) h()) e Hg (5) .

Lemma 2 allows for the following clarification.

Lemma 3.

Let, under the conditions of Lemma 2f(x)<0 for almost all xeQ.

Then h(x)>0 YxeintQ.

Proof of Lemma 3.

The statement of Lemma 3 obviously follows from Lemma 2.

Let us establish its important consequence concerning the function (") from the maximum principle (9) — (12).
Lemma 4.

The function s(x)>0 for almost all xeQ.

Proof of Lemma 4.
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Consider a function f(*)€EL*(2) such that f(x)<0 for almost all x€Q and f(x)<0 for all points x from some set of positive
measure. Let us define h(*)EW,"4(Q) as a generalized solution to the Dirichlet problem (14) with a(x):=3u(x)y*(x). Since
a(x)=u_- y*(x)=0 due to the second relation from (7), this solution exists and is uniquely determined. According to the Remark

2h(-) € Hg (ﬁ) , whence in view of (14) A h(-) e L™ - This means that the function h(*) can be substituted into (12)

Jo W) f(x)dx = = [ h(x)p(dx) — 20 [ h(x)y(x)dx (15)
It follows that the nondegeneracy condition (11) can be refined as follows:
o+ p(Q) >0 (16)

Indeed, if (16) is violated, then according to (10) and (11) v=0 and p(dx)=0. But then (15) takes the form
fQ Y(x)f(x)dx =0 » where the non-positive and non-zero function f(*)EL*(Q) is arbitrary. But then ()=0, which, along

with the equalities v=0 and p(dx)=0, contradicts (11). In (15) h(x)>0 Vx € intQ by Lemma 3. Since o(x) > OVx € O by

assumption, and y(x)=0 for x€I" due to the boundary condition from (7), then according to (10) supp p(dx)C int Q and
u(dx)=0. At the same time, by Lemma 1 and Remark 1, y(x) > OVx € Q and maxeq y(x)>0. From this and from (16) it

follows that in (15) the right-hand side is strictly negative and therefore /Q Y(x)f(x)dx <0 - Since here f(1)EL™(R) is an

arbitrary non-positive and non-zero function, we come to the conclusion of Lemma 4. Taking Lemma 4 into account, relation
i 0 _ 3 2
(9) is transformed to the form ;0 — apg MaXy ey u, ] [uy(x) —ku ] .

0( ) 3

where x(v):=v for u_<v<u., y(v):=u_ for v<u_, x(v):=u. for v>u..
Thus, the optimal process is generated by a nonlinear controller

y3
u(x) = x { %} (17)
Substituting this equality into the first equation from (7), taking (8) into account, leads to the relations
Ay—a(y)=0,ylr =0 (18)
Here
3 3
a(y) :=x{§—k}y3—kxz{§’—k} (19)

Note that formulas (17), (18), (19) uniquely determine the process [y(-),u(-)] € (WOI,Z A L4) % > which is optimal.

Indeed, for this it is enough to verify that the boundary value problem (18) is uniquely solvable. For this purpose, we note that
function (19) is strictly monotonic:
[a(y) —a(2)](y —2) > OVy # z

Therefore, the first equation from (18) satisfies the condition of strict monotonicity (9.33) ([12, IV, 9]):
Jo {1y (x) = V2(x)* + [a(y) - a(2)](y = 2)} dx > 0
for any two elements y and z from W,"*(Q)nL*(Q) that are not identically equal to each other. In addition, the coercivity
condition (9.2) ([12, IV, 9]) is satisfied. Indeed,

3
/Q 1Vy(x)Pdx + /Q a(x)y(x)dx = /Q Vy(x)Pdx + /Q x{g—k}y4<x>dx-

3
¢ f XZ{;’—k}yu)dxz [ vuPaxsu [ ytax -k, [ lolax
Q Q Q 2

To estimate [o|y|dx let’s use Young’s inequality: gp < jl)(ga)p + l(é)q ([12, 11, 1]), where p>1 and q= pLI .
- qre¢ —
Let us take here a:=|y(x)|, b=1, p:=4, then q:=4/3. We get
4 3
Jo ly@)ldx < & [ ly(o)*dx + 3375 mes(Q) -

/Q |Vy(x)|[>dx + /Q a(x)y(x)dx > /Q |Vy(x)[*dx + u_ /Q ytdx—

4

£ 4 3ku,
_ku+z'/Qy dx — PRI mes(Q)

4 Uu—
€<, /4—ku+
we get an estimate of the form

fQ [Vy(x)|>dx + /Q a(x)y(x)dx > fQ |Vy(x)|2dx + x/Q y*dx - C

Thus,

Choosing now

where #>0, C>0.
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This estimate means that the coercivity condition (9.2) ([12, IV, 9]) is actually true for m=2 and gq=4. The validity of
condition (1) ([12, IV, 9]) is obvious. In view of the established facts, the existence of a solution to problem (18) is guaranteed
by Theorem 9.1 ([12, IV, 9]), and the uniqueness is guaranteed by the concluding remark 9.1 ([12, IV, 9]).

Conclusion

The purpose of the paper was to demonstrate the practical application of the theory developed in [2] to the state-
constrained optimal control problem for a Laplace equation. As a result, it was found that the optimal process in this problem is
generated by a nonlinear optimal controller and its equation was obtained.
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