НАРУШЕНИЯ ЖИРНОКИСЛОТНОГО СОСТАВА МЕМБРАН ЭРИТРОЦИТОВ ПРИ ИНТОКСИКАЦИИ ОКСИДАМИ АЗОТА И ИХ ПРОФИЛАКТИКА РАСТИТЕЛЬНЫМИ ЭКСТРАКТАМИ

Научная статья
DOI:
https://doi.org/10.18454/IRJ.2016.46.295
Выпуск: № 4 (46), 2016
Опубликована:
2016/04/18
PDF

Момот Т.В.1, Кушнерова Н.Ф.2

1ORCID: 0000-0003-3873-0343, Кандидат медицинских наук, 2ORCID: 0000-0002-6476-0039, Доктор биологических наук, Школа биомедицины Дальневосточного федерального университета, Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения РАН

НАРУШЕНИЯ ЖИРНОКИСЛОТНОГО СОСТАВА МЕМБРАН ЭРИТРОЦИТОВ ПРИ ИНТОКСИКАЦИИ ОКСИДАМИ АЗОТА И ИХ ПРОФИЛАКТИКА РАСТИТЕЛЬНЫМИ ЭКСТРАКТАМИ

Аннотация

Проведены экспериментальные исследования по изучению профилактического введения экстракта «Калифен», выделенного из калины (Viburnum sargentii Koechne) и экстракта элеутерококка до интоксикации оксидами азота. Показано, что интоксикация оксидами азота сопровождалась нарушением в соотношении жирных кислот в мембране эритроцитов: увеличивалось количество насыщенных жирных кислот и снижалось количество ненасыщенных жирных кислот. Предварительное введение калифена до интоксикации оксидами азота в большей степени обладало защитным эффектом на состав жирных кислот мембран эритроцитов, чем таковое при введении экстракта элеутерококка.

Ключевые слова: оксиды азота, эритроциты, калифен, элеутерококк, жирные кислоты/

Momot N.V.1, Kushnerova N.F.2

1ORCID: 0000-0003-3873-0343, MD, 2ORCID: 0000-0002-6476-0039, PhD in Biology, Biomedicine School of Far East Federal University, Institute of marine biology named after A.V. Zhirmunsky FEBRAS

VIOLATIONS OF ERYTHROCYTES MEMBRANES FATTY ACIDS PATTERN AT THE NITROGEN OXIDES INTOXICATION AND THEIR PREVENTION BY PLANT EXTRACTS

Abstract

Pilot studies on studying of preventive introduction of the «Kalifen» extractemitted from a guelder-rose (Viburnum sargentii Koechne) and extract of an eleuterokokk to intoxication with nitrogen oxides are conducted. It was shown that intoxication nitrogen oxides was followed by violation in the ratio of fatty acids in a membrane of erythrocytes: the amount of saturated fatty acids increased and the amount of nonsaturated fatty acids decreased. Preliminary introduction of a kalifen to intoxication nitrogen oxides in a greater degree possessed protective effect on the fatty acids in erythrocyte membranes, than that at introduction extract eleuterococcus.

Keywords: nitrogen oxides, erythrocytes, kalifen, eleuterokokk, fatty acids/

В условиях непрерывно расширяющихся контактов человека с химическими веществами возрастает вероятность острых и хронических отравлений веществами-окислителями. Особое место среди них занимают нитросоединения, которые широко применяются при производстве красителей, взрывчатых веществ, лекарственных средств, в сельском хозяйстве в качестве пестицидов и удобрений. Накопление в значительных количествах соединений азота в питьевой воде, овощах и фруктах обусловлено нерациональным применением пестицидов и органических удобрений. Также содержат оксиды азота (гидратированные формы азотной и азотистой кислот, нитрат- и нитрит-ионы, пероксиды) выхлопные газы, возникающие в процессе горения при температуре выше 1000оС (автотранспорт, стационарные источники). Потенциальная опасность, исходящая от вдыхания паров этих веществ на организм человека или их употребление с водой и продуктами питания обусловлена формированием свободных радикалов, которые нарушают структурную организацию мембран [8]. Установлено, что длительный контакт с нитрогазами приводит к снижению содержания эритроцитов, достоверному повышению гематокрита, среднего клеточного объема эритроцитов, анизоцитозу и ретикулоцитозу, а также к увеличению проницаемости их мембран [5]. В настоящее время остро стоит вопрос разработки медицинских технологий защиты организма человека от воздействия вредных химических веществ техногенного происхождения. Одним из таких подходов является профилактическое использование растительных препаратов, содержащих комплексы биологически активных полифенолов, обладающих способностью гасить свободно-радикальные реакции, образовывать комплексы с ионами переходных металлов, влиять на активность металлозависимых ферментов, блокировать процессы перекисного окисления липидов, взаимодействовать с биологическими мембранами, меняя их структурные характеристики. Ежедневно потребляемое человеком количество суммарных полифенолов, включая различные классы флавоноидов и их димеры, может достигать 1 грамма. В настоящее время наиболее широкой популярностью пользуется экстракт элеутерококка, защитное действие которого при гипоксии связывают с регулирующим влиянием на углеводный и пластический обмен [4]. Однако запасы этих растений снижаются ежегодно в связи с преимущественным использованием корней. Следовательно, очевидна актуальность и необходимость поиска и изучения новых источников сырья, в частности, других видов растений, как сравнительных аналогов, с целью изучения возможности использования их как антирадикальных средств. Ранее нами были опубликованы данные, свидетельствующие о широком спектре биологической активности растительных препаратов, выделенных из отходов от переработки дикорастущих видов Дальневосточной тайги, благодаря проявлению ими антиоксидантных, антирадикальных, мембрано- и гепатопротекторных свойств [7]. Одним из таких является биологически-активная добавка к пище «Калифен®» с антирадикальными свойствами (патент RU № 2199249, cвидетельство на товарный знак RU № 228327), которая была выделена из отжима после отделения сока калины Саржента (Viburnum sargentii Koehne). Химический состав препарата был исследован с помощью жидкостного хроматографа «Controller LCC 500» (Pharmacia). Это водно-спиртовый (40%) экстракт, который представляет собой композицию различных классов веществ: лейкоантоцианов, катехинов и их полимерных форм, олигомерных таннинов, лигнина, флавонолов, органических кислот (фумаровой, аскорбиновой, глицериновой, галактуроновой и др.), свободных аминокислот (гистидина, аргинина, аспарагиновой и глутаминовой кислот, треонина, серина, глицина, цистеина, метионина, изолейцина, тирозина и др.), сахаров (сахарозы, рафинозы) и других органических соединений. Полифенолы составляют свыше 60% сухого остатка экстракта. В качестве препарата сравнения использовали «Экстракт элеутерококка».

Целью работы явилось изучение профилактического влияния калифена и элеутерококка при моделировании у животных интоксикации оксидами азота.

Материалы и методы. Эксперимент проводили на крысах самцах Вистар массой 180-200 г, содержащихся в стандартных условиях вивария. Ингаляционное воздействие оксидами азота осуществляли в затравочной камере, сконструированной по типу камер Б.А. Курляндского. Животных помещали в условия относительной влажности воздуха (40-60%), заданных параметров температуры (20-220С), с автономной системой очистки и регенерации воздуха. Концентрация окислов азота в камере поддерживалась на уровне 4,0 мг/м3 (ПДК для паров окислов азота в воздухе рабочей зоны составляет 0,4 мг/м3 - ГН 2.2.5.1313-03). Ингаляцию осуществляли в течение 6 мин. Схема эксперимента заимствована из работы А.В. Кропотова [6]. То есть, в эксперименте была смоделирована интоксикация при техногенной катастрофе с массивным выбросом оксидов азота.

Животные были разделены на 4 группы: 1-я группа (контроль) - интактные животные (n=6); 2-я - интоксикация оксидами азота (n=16); 3-я - профилактическое введение калифена в течение 14 дней до интоксикации оксидами азота, с последующей интоксикацией в течение 6 мин. (n=10); 4-я - профилактическое введение элеутерококка в течение 14 дней до интоксикации оксидами азота, с последующей интоксикацией в течение 6 мин. (n=10). Водные растворы сухого остатка из калифена и элеутерококка (предварительно освобожденные от спирта экстракты путем упаривания в вакууме) вводили внутрижелудочно в количестве 0,4 мл, что соответствовало дозе 100 мг общих полифенолов/кг массы тела. Доза в 100 мг/кг соответствует известной терапевтической дозе для полифенольных гепатопротекторов [3]. Крыс выводили из эксперимента через 60 мин после интоксикации оксидами азота методом декапитации под легким эфирным наркозом с соблюдением правил и международных рекомендаций Европейской конвенции по защите позвоночных животных, используемых для экспериментов или в иных научных целях (Страсбург, 1986).

Кровь для исследований собирали из шейной вены животных в вакуэты с 1% раствором гепарина. Эритроциты выделяли и гемолизировали общепринятыми методами. Экстракты общих липидов из мембран эритроцитов готовили по методу J. Folch et al. [9]. Для определения жирнокислотного спектра экстракты липидов подвергали метанолизу с хлористым ацетилом [2]. Эфиры жирных кислот анализировали на газовом хроматографе «ЛХМ-2000-05» (Россия) с пламенно-ионизационным детектором. Фракционное разделение фосфолипидов осуществляли методом двумерной микротонкослойной хроматографии [12], а их количественное определение по методу [13]. Использовали следующие системы растворителей [11]: в первом направлении – хлороформ : метанол : аммиак (28%-ный) (65:25:5 или 65:35:5, по объему), во втором – хлороформ : ацетон : метанол : ледяная уксусная кислота : вода (30:40:10:10:5 или 50:20:10:10:5, по объему). Для обнаружения холинсодержащих фосфолипидов (фосфатидилхолин) использовали реактив Драгендорфа [15]; липиды проявлялись в виде оранжевых пятен на желтом фоне. Для обнаружения фосфолипидов, содержащих аминогруппу (фосфатидилэтаноламин), пластинки опрыскивали 5%-ным раствором нингидрина в ацетоне [11] с последующим нагреванием в течение 2-3 минут над парами воды до появления розовых пятен на белом фоне. Для проявления всех фосфолипидных фракций применяли молибдатный реактив [13] и реагент на основе малахитового зеленого [14]. При этом липиды проявлялись в виде синих или зеленых пятен на белом фоне. Количественные данные обрабатывали с использованием статистического пакета Instat 3,0 (GraphPad. Software Inc. USA, 2005) со встроенной процедурой проверки соответствия выборки закону нормального распределения. Для определения статистической значимости различий в зависимости от параметров распределения использовали параметрический t-критерий Стьюдента или непараметрический U-критерий Манна-Уитни.

Результаты и обсуждение. Выживаемость животных после интоксикации оксидами азота составляла 40%, тогда как предварительное введение калифена или элеутерококка способствовало выживаемости 70% животных. При изучении количественных характеристик жирных кислот общих липидов эритроцитарных мембран после интоксикации оксидами азота отмечалось статистически достоверное увеличение всех видов насыщенных жирных кислот (таблица). Так, количество миристиновой кислоты относительно контрольных значений увеличилось на 46% (р<0,001), пальмитиновой на 8% (р<0,05), стеариновой на 18% (р<0,001). При этом сумма насыщенных жирных кислот составляла 47% (в контроле 42%).

Таблица – Влияние интоксикации оксидами азота на содержание основных видов жирных кислот в общих липидах эритроцитарных мембран крыс и их коррекция калифеном и элеутерококком (в % от суммы всех жирных кислот, М±м)

27-04-2016 11-07-27

Также увеличилось количество моноеновых жирных кислот: пальмитолеиновой кислоты на 39% (р<0,001) и олеиновой кислоты на 19% (р<0,01). Количество полиненасыщенных жирных кислот семейства n-6 снизилось: линолевой и арахидоновой кислот, в среднем, на 11% (р<0,05-0,001). В ряду семейства жирных кислот n-3 отмечалось снижение количества линоленовой кислоты на 12% (р<0,01), эйкозапентаеновой кислоты на 46% (р<0,001) и докозагексаеновой кислоты на 58% (р<0,001).

Сумма ненасыщенных жирных кислот составляла 53% (в контроле – 58%). В связи с этим индекс насыщенности вырос до 0,89 (в контроле – 0,72), что предполагает повышение жесткости мембраны и нарушение ее проницаемости.

В связи с тем, что основными структурными компонентами биологических мембран являются фосфолипиды (в мембране эритроцитов до 65%), то мы выделили из общих липидов методом тонкослойной хроматографии фракцию фосфатидилхолина и фосфатидилэтаноламина. В жирнокислотном спектре фосфатидилхолина эритроцитарных мембран после интоксикации оксидами азота отмечалось высокое содержание насыщенных жирных кислот. Так, количество миристиновой кислоты было на 36% (р<0,001) выше контроля, что составляло 1,63±0,04% по сравнению с 1,20±0,05% в контроле. Количество пальмитиновой кислоты увеличилось на 15% (32,21±0,72% против 28,11±0,68% в контроле, р<0,001), а стеариновой кислоты на 16% (16,11±0,41% против 13,88±0,27% в контроле, р<0,001). Эти изменения обусловили увеличение суммы насыщенных жирных кислот до 50% (в контроле 43%). Также отмечался повышенный уровень пальмитолеиновой кислоты, в среднем, на 27% (р<0,001), что составляло 2,54±0,03% по сравнению с 2,00±0,03% в контроле. Количество олеиновой кислоты выросло на 8% (19,96±0,48% против 18,51±0,45% в контроле, р<0,05). В ряду полиненасыщенных жирных кислот семейства n-6 отмечалось снижение содержания линолевой кислоты на 13% (р<0,001), что составляло 16,43±0,35% против 18,86±0,50% в контроле, а арахидоновой кислоты на 32% (8,10±0,36% против 12,00±0,51% в контроле, р<0,001). В ряду семейства жирных кислот n-3 снижалось количество линоленовой кислоты на 12% (1,00±0,02% против 1,13±0,02%, р<0,001), эйкозапентаеновой кислоты на 37% (0,82±0,04% против 1,31±0,02% в контроле, р<0,001) и докозагексаеновой кислоты на 60% (1,20±0,01% против 3,00±0,03% в контроле, р<0,001). В связи с этими изменениями сумма ненасыщенных жирных кислот снизилась до 50% (в контроле 57%), а индекс насыщенности увеличился до 1,00 (в контроле 0,75).

В составе фосфатидилэтаноламина эритроцитарных мембран крыс после интоксикации оксидами азота количественные характеристики жирных кислот также отличались относительно таковых показателей в контрольной группе. Так, количество миристиновой кислоты увеличилось на 31% (1,66±0,02% против 1,27±0,02% в контроле, р<0,001), а количество пальмитиновой кислоты возросло на 12% (34,91±0,59% против 31,22±0,54% в контроле, р<0,001). Уровень стеариновой кислоты вырос до 21,79±0,43%, что на 19% (р<0,001) превышало контрольную величину (18,26±0,47%). В связи с этим сумма насыщенных жирных кислот увеличилась до 58% (в контроле - 51%). Среди моноеновых жирных кислот отмечалось увеличение количества пальмитолеиновой кислоты на 32% (р<0,001), что составляло 5,26±0,06% (в контроле - 4,00±0,05%). При этом количество олеиновой кислоты увеличилось на 21% (9,85±0,30% против 8,17±0,28% в контроле, р<0,001). В ряду полиненасыщенных жирных кислот семейства n-6 количество линолевой кислоты было снижено на 22% (6,12±0,27% против 7,86±0,37% в контроле, р<0,001), а количество арахидоновой кислоты на 25% (17,44±0,45% против 23,11±0,58%, р<0,001). В ряду полиненасыщенных жирных кислот семейства n-3 содержание линоленовой кислоты снизилось до 1,00±0,02%, что на 26% (р<0,001) отличалось от контроля (1,36±0,02%). При этом, количество эйкозапентаеновой кислоты уменьшилось на 43% (0,67±0,02% по сравнению с 1,18±0,01% в контроле, р<0,001), а докозагексаеновой кислоты на 64% (1,30±0,02% против 3,57±0,04% в контроле, р<0,001). Сумма ненасыщенных жирных кислот составляла 42% (в контроле 49%), а индекс насыщенности – 1,38 (в контроле 1,04).

На основании выше изложенного следует, что в эритроцитарных мембранах крыс после интоксикации оксидами азота происходит изменение молекулярных видов фосфолипидов. Они отличаются большей насыщенностью, чем таковые у контрольных животных.

При профилактическом введении калифена (3 группа) и элеутерококка (4 группа) до интоксикации оксидами азота полного восстановления исследованных биохимических параметров мембран эритроцитов до контрольных значений не отмечалось (таблица), однако прослеживалась тенденция к сохранению соотношения жирных кислот. Так, в 3 группе (таблица) относительно контроля оставалось высокое содержание пальмитолеиновой кислоты (на 15%, р<0,001) и низкое эйкозапентаеновой (на 11%, р<0,01) и докозагексаеновой (на 30%, р<0,001) жирных кислот. В 4-й группе на 33% (р<0,001) относительно контроля был повышен уровень миристиновой кислоты, на 7% (р<0,05) пальмитиновой, на 32% (р<0,001) пальмитолеиновой, на 26% (р<0,001) эйкозапентаеновой и на 37% (р<0,001) докозагексаеновой жирных кислот.

В составе фосфатидилхолина и фосфатидилэтаноламина при профилактическом введении калифена (3 группа) и элеутерококка (4 группа) также прослеживается выраженная тенденция к сохранению жирнокислотного спектра мембран эритроцитов, однако степень выраженности изменений отличалась в зависимости от введенного препарата. Так, в составе фосфатидилхолина при введении калифена относительно контрольных значений было достоверно повышено количество пальмитолеиновой кислоты на 11% (р<0,01), что составляло 2,21±0,05%. При этом количество эйкозапентаеновой кислоты было снижено на 24% (1,00±0,02%, р<0,001), а докозагексаеновой кислоты на 19% (2,42±0,12%, р<0,001). При таком соотношении жирных кислот при профилактическом введении калифена в составе фосфатидилхолина сумма насыщенных жирных кислот составляла 46%, а сумма ненасыщенных жирных кислот – 54%, что обусловило снижение индекса насыщенности до 0,85. В составе фосфатидилэтаноламина достоверно было увеличено количество пальмитолеиновой кислоты на 18% (4,73±0,07%, р<0,001) и также снижено количество эйкозапентаеновой кислоты на 28% (0,85±0,03%, р<0,001) и докозагексаеновой кислоты на 24% (2,72±0,03%, р<0,001). Сумма насыщенных кислот составляла 52%, а ненасыщенных – 48%, что обусловило несколько больший индекс насыщенности – 1,08.

При профилактическом введении элеутерококка в составе фосфатидилхолина было повышено относительно контроля количество миристиновой кислоты на 25% (р<0,001) и пальмитиновой кислоты на 10% (р<0,01), что, соответственно, составляло 1,50±0,05% и 30,86±0,74%. Также на 15% (р<0,001) было увеличено количество пальмитолеиновой кислоты (2,30±0,04%). Следует отметить снижение арахидоновой кислоты на 13% (10,43±0,51%, р<0,05), эйкозапентаеновой кислоты на 30% (0,92±0,02%, р<0,001) и докозагексаеновой кислоты на 23% (2,31±0,08%, р<0,001). Сумма насыщенных кислот составляла 47%, а ненасыщенных – 53%, в связи с этим индекс насыщенности соответствовал величине 0,89. В составе фосфатидилэтаноламина отмечалось увеличение относительно контроля количества миристиновой кислоты на 13% (1,43±0,02%, р<0,001) и пальмитиновой кислоты на 7% (33,33±0,50%, р<0,05). Среди моноеновых жирных кислот следует отметить увеличение на 25% (р<0,001) пальмитолеиновой кислоты, что составляло 5,00±0,06%. В ряду полиненасыщенных жирных кислот достоверно сниженным на 34% (р<0,001) было содержание эйкозапентаеновой кислоты и на 30% (р<0,001) докозагексаеновой кислоты, что, соответственно, составляло 0,78±0,03% и 2,51±0,02%. Сумма насыщенных жирных кислот была в пределах 54%, а ненасыщенных – 46%, что обусловило величину индекса насыщенности на уровне 1,17.

Биохимическим механизмом сохранения жирнокислотных спектров эритроцитарных мембран является свойство полифенольных структур, входящих в калифен и элеутерококк, улавливать свободные и оксигенные радикалы [10]. Кроме того, молекулы полифенолов, взаимодействуя с поверхностью мембран, способны образовывать мономолекулярные слои, увеличивающие прочность поверхностного слоя клеток, и, соответственно, снижая возможность атаки радикалами [1]. Известно, что в состав элеутерококка входит активная группа изомерных флавоноидных содинений (элеутерозиды), не образующих олигомерных форм. В составе калифена присутствуют полимерные вещества (олигомерные и полимерные проантоцианидины), которые демонстрируют антирадикальные свойства в большей степени, чем мономеры элеутерококка. Таким образом, калифен и элеутерококк, обладая антирадикальными и мембраностабилизирующими свойствами, по-видимому, снимали опасность глубокого нарушения функционального состояния эритроцитов, что увеличивало выживаемость животных. Применение растительных экстрактов к ежедневной диете позволит решить проблему выживания в районах возможных техногенных катастроф и экологически неблагоприятных регионах.

Выводы:

  1. Интоксикация оксидами азота в концентрации 4,0 мг/м3 сопровождается рассогласованием жирнокислотной составляющей мембран эритроцитов, что позволяет рассматривать все эти проявления как атрибут токсического стресса.
  2. Перераспределение жирных кислот в мембране эритроцитов свидетельствует о наличии структурно-функциональных нарушений при токсическом стрессе и формировании компенсаторной реакции в ответ на действие повреждающего фактора (увеличение насыщенных жирных кислот).
  3. Растительные полифенольные препараты калифен и элеутерококк повышают выживаемость животных при профилактическом введении до интоксикации оксидами азота.
  4. Предварительное введение калифена в большей степени обладало защитным эффектом на жирнокислотную составляющую мембран эритроцитов, чем таковое при введении элеутерококка.

Работа поддержана Министерством образования и науки РФ, проект № 1326.

Литература

  1. Афанасьева Ю.Г., Фахретдинова Е.Р., Спирихин Л.В., Насибуллин Р.С. О механизме взаимодействия некоторых флавоноидов с фосфатидилхолином клеточных мембран // Хим.-фарм. журнал. - 2007. - Т. 41, № 7. - С. 12-14.
  2. Берчфилд Г., Сторрс Э. Газовая хроматография в биохимии. Пер. с англ. М.: Мир; 1964. 620 с.
  3. Венгеровский А.Н., Маркова И.В., Саратиков А.С. Доклиническое изучение гепатозащитных средств // Ведомости фарм. комитета. - 1999. - № 2. - С. 9-12.
  4. Галушкина Л.Р., Морозов Ю.В. Защитное влияние экстракта элеутерококка и его отдельных фракций на организм мышей при гипоксии и гипероксии // Фармация. - 1993. - № 2. - С. 30-33.
  5. Иванова А.С., Пахрова О.А., Назаров С.Б. Влияние длительной нитритной интоксикации на эритроцитарную систему беременных крыс и их потомство // Гигиена и санитария. - 2007. - № 2. - С. 63-66.
  6. Кропотов А.В. Экспериментальный отек легких и его фармакопрофилактика антигипоксантами: автореф. дис….д-ра. мед. наук. С.Пб., 1997. 45 с.
  7. Кушнерова Н.Ф., Спрыгин В.Г., Фоменко С.Е., Кушнерова Т.В. Биологически активные добавки как основа сохранения здоровья и продления профессионального долголетия // Вестник ДВО РАН. – 2007. - № 6. – С. 65-72.
  8. Кушнерова Н.Ф., Рахманин Ю.А. Влияние интоксикации оксидами азота на метаболические реакции печени и профилактика поражений // Гигиена и санитария. - 2008. - № 1. - С. 70-73.
  9. Folch J., Less M., Sloane-Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissue // Biol. Chem. - 1957. - Vol. 226. - P.497-509.
  10. Kropacova K., Misurova E., Hakova H. Protective and therapeutic effect of silymarin on the development of latent liver damage // Radiats. Biol. Radioecol. - 1998. - Vol. 38, № 3. - P. 411-415.
  11. Rouser G., Kritchevsky G., Yamamoto A. Column chromatographic and associated procedures for separation and determination of phosphatides and glicolipids // Lipid chromatogr. Anal. - N.Y.: Dekker, 1967. - Vol. 1. - P. 99-162.
  12. Svetachev V.I., Vaskovsky V.E. A simplified technique for thin layer microchromatography of lipids // J. Chromatogr. - 1972. - Vol. 67, № 2. - P. 376-378.
  13. Vaskovsky V.E., Kostetsky E.Y., Vasenden I.M. A universal reagent for phospholid analysis // Chromatography. - 1975. - Vol. 114, № 1. - P.129-141.
  14. Vaskovsky V.E., Latyshev N.A. Modified Jungnickel’s reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms // J. Chromatogr. - 1975. - Vol. 115, № 1. - P. 246-249.
  15. Wagner H., Horhammer L., Wolff F. Thin-layer chromatography of phosphatides and glycolipides // Biochem. Z. - 1961. - Bd. 334. - S. 175-184.

References

  1. Afanas'eva Yu.G., Fahretdinova E.R., Spirihin L.V., Nasibullin R.S. O mehanizme vzaimodeistviya nekotoryh flavonoidov s fosfatidilholinom kletochnyh membran // Him.-farm. zhurnal. - 2007. - T. 41, no. 7. - pp. 12-14.
  2. Berchfild G., Storrs E. Gazovaya hromatografiya v biohimii. Per. s angl. M.: Mir; 1964. 620 p.
  3. Vengerovskii A.N., Markova I.V., Saratikov A.S. Doklinicheskoe izuchenie gepatozashitnyh sredstv // Vedomosti farm. komiteta. - 1999. – no. 2. - pp. 9-12.
  4. Galushkina L.R., Morozov Yu.V. Zashitnoe vliyanie ekstrakta eleuterokokka i ego otdel'nyh frakcii na organizm myshei pri gipoksii i giperoksii // Farmaciya. - 1993. – no. 2. - pp. 30-33.
  5. Ivanova A.S., Pahrova O.A., Nazarov S.B. Vliyanie dlitel'noi nitritnoi intoksikacii na eritrocitarnuyu sistemu beremennyh krys i ih potomstvo // Gigiena i sanitarija. - 2007. – no. 2. - pp. 63-66.
  6. Kropotov A.V. Eksperimental'nyi otek legkih i ego farmakoprofilaktika antigipoksantami: avtoref. dis….d-ra. med. nauk. S.Pb., 1997. 45 p.
  7. Kushnerova N.F., Sprygin V.G., Fomenko S.E., Kushnerova T.V. Biologicheski aktivnye dobavki kak osnova sohraneniya zdorov'ya i prodleniya professional'nogo dolgoletiya // Vestnik DVO RAN. – 2007. – no. 6. – pp. 65-72.
  8. Kushnerova N.F., Rahmanin Yu.A. Vliyanie intoksikacii oksidami azota na metabolicheskie reakcii pecheni i profilaktika porazhenii // Gigiena i sanitarija. - 2008. – no. 1. - pp. 70-73.
  9. Folch J., Less M., Sloane-Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissue // Biol. Chem. - 1957. - Vol. 226. - pp. 497-509.
  10. Kropacova K., Misurova E., Hakova H. Protective and therapeutic effect of silymarin on the development of latent liver damage // Radiats. Biol. Radioecol. - 1998. - Vol. 38, no. 3. - pp. 411-415.
  11. Rouser G., Kritchevsky G., Yamamoto A. Column chromatographic and associated procedures for separation and determination of phosphatides and glicolipids // Lipid chromatogr. Anal. - N.Y.: Dekker, 1967. - Vol. 1. - P. 99-162.
  12. Svetachev V.I., Vaskovsky V.E. A simplified technique for thin layer microchromatography of lipids // J. Chromatogr. - 1972. - Vol. 67, № 2. - P. 376-378.
  13. Vaskovsky V.E., Kostetsky E.Y., Vasenden I.M. A universal reagent for phospholid analysis // Chromatography. - 1975. - Vol. 114, № 1. - P.129-141.
  14. Vaskovsky V.E., Latyshev N.A. Modified Jungnickel’s reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms // J. Chromatogr. - 1975. - Vol. 115, № 1. - P. 246-249.
  15. Wagner H., Horhammer L., Wolff F. Thin-layer chromatography of phosphatides and glycolipides // Biochem. Z. - 1961. - Bd. 334. - S. 175-184.