Pages Navigation Menu
Submit scientific paper, scientific publications, International Research Journal | Meždunarodnyj naučno-issledovatel’skij žurnal

ISSN 2227-6017 (ONLINE), ISSN 2303-9868 (PRINT), DOI: 10.18454/IRJ.2227-6017
ПИ № ФС 77 - 51217, 16+

Download PDF ( ) Pages: 8-10 Issue: №5 (24) Part 1 () Search in Google Scholar
Cite

Cite


Copy the reference manually or choose one of the links to import the data to Bibliography manager
Kardanova Z.I., "ABOUT ABNORMAL PHOSPHORESCENCE OF ORGANIC SEMICONDUCTORS". Meždunarodnyj naučno-issledovatel’skij žurnal (International Research Journal) №5 (24) Part 1, (2020): 8. Wed. 29. Jan. 2020.
Kardanova, Z.I. (2020). OB ANOMALYNOY FOSFORESCENCII ORGANICHESKOGO POLUPROVODNIKA [ABOUT ABNORMAL PHOSPHORESCENCE OF ORGANIC SEMICONDUCTORS]. Meždunarodnyj naučno-issledovatel’skij žurnal, №5 (24) Part 1, 8-10.
Kardanova Z. I. ABOUT ABNORMAL PHOSPHORESCENCE OF ORGANIC SEMICONDUCTORS / Z. I. Kardanova // Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. — 2020. — №5 (24) Part 1. — С. 8—10.

Import


ABOUT ABNORMAL PHOSPHORESCENCE OF ORGANIC SEMICONDUCTORS

Карданова З.И.

Соискатель, Кабардино-Балкарский государственный университет

ОБ АНОМАЛЬНОЙ ФОСФОРЕСЦЕНЦИИ ОРГАНИЧЕСКОГО ПОЛУПРОВОДНИКА

Аннотация

Исследуя люминесцентные свойства органических полупроводников, в частности поли-N-винилкарбазола, была обнаружена аномальная фосфоресценция, т.е. немонотонное убывание затухания, особенно у чистого. Область времён, характерных для аномалии, в случае с поли-N-винилкарбазолом меньше, чем у желатин.

Ключевые слова: органические полупроводники, фосфоресценция, поли-N-винилкарбазол, желатин.

Kardanova Z.I.

Graduate student, Kabardin-Balkar state university

ABOUT ABNORMAL PHOSPHORESCENCE OF ORGANIC SEMICONDUCTORS

Abstract

Investigating the luminescent properties of organic semiconductors, in particular poly-N-vinilcarbazol, the abnormal phosphorescence, i.e. nonmonotonic decrease of attenuation, was found, especially in the pure. The range of times, characteristic for abnormaliy, in the case with poly-N-vinilcarbazol is less, than for gelatin.

Keywords: organic semiconductors, phosphorescence, poly-N-vinilcarbazol, gelatin.

Широкое применение в электрофотографии и заслуживающим внимания является поли-N-винилкарбазол (ПВК), измерения проведены на двух образцах ПВК [1-5, 13-16], которые различались степенью чистоты, вследствие чего различной была и их электрофотографическая чувствительность, много большая у менее чистого образца.

Вполне отчетливо наблюдаются аномальная фосфоресценция у образцов ПВК, особенно для чистого. Как и следовало ожидать, область времен, характерных для аномалии, в случае ПВК существенно отличается от таковой в случае желатины.

Действительно, большая фотопроводимость ПВК по сравнению с желатиной свидетельствует либо, о более низкой концентрации ловушек фотоэлектронов в нем, либо о малой глубине ловушек, либо, наконец, о том и другом одновременно. Поэтому, время нахождения электронов в системе мелких ловушек после прекращения возбуждения, определяющее длительность наблюдаемой аномалии, должно быть невелико, и если для различных образцов желатины максимум аномалии соответствовал временам от нескольких десятых до целой секунды, то для ПВК он расположен при временах, на порядок меньших.

При сопоставлении результатов для ПВК и желатины можно отметить еще одну совпадающую особенность обеих веществ – антикорреляцию фосфоресцентных и фотографических характеристик. Что касается общих результатов работы, то они именно таковы, какие и ожидались: во-первых, обнаружено еще одно органическое вещество с аномальной фосфоресценцией, т.е. желатина в этом отношении  не уникальна, а является представителем целого класса веществ, и, во – вторых, подтверждена ожидавшаяся связь аномальной фосфоресценции с фото проводниковыми свойствами.

Как показано выше, аномальная фосфоресценция, обнаруженная у желатины и других органических соединений, интерпретировалась как результат перераспределения электронов по мелким локальным уровням в запрещенной зоне. Чем дольше электроны находятся на этих уровнях и чем, следовательно, эффективнее система таких уровней, тем труднее должна происходить передача электронов желатиной микрокристаллам галогенида серебра в фотографической эмульсии. Если это действительно так, введение солей серебра непосредственно в желатину приведет к полному исчезновению или, по крайней мере, к значительному уменьшению аномалии, так как создается возможность для “отсасывания” электронов с мелких локальных уровней желатины путем перехода в зону проводимости Ag – соединений или на их локальные уровни.

Если в 10 % – ные растворы желатин всех типов ввести раствор AgNO3, то аномальная фосфоресценция исчезает, а длительность фосфоресценции существенно уменьшается, что свидетельствует о взаимодействии AgNO3 с желатиной. Такой же результат, получается при синтезе AgBr МК в растворе желатины, одновременно вливая растворы AgNO3 и KBr.

Влияние солей Ag, из которых AgNO3 находится в состоянии молекулярной дисперсности, а AgBr образует отдельную фазу, вполне сопоставимо по величине. Это означает, что определяющую роль в “отсасывании” электронов в обеих случаях играют связи желатины с серебром, скорее всего в ионной форме, но не с нитратом и не с бромидом.

Утверждение дополнительно подкрепляется еще и результатами опытов, в которых слои желатины с AgNO3 и AgBr засвечивались УФ – излучением до появления видимого почернения. Выделение фотолитического серебра приводит к тем же изменениям кинетики фосфоресценции образцов.

Для выяснения природы тех связей, которые служат каналом передачи электронов, [6-12, 17-19] проведены измерения инфракрасных (ИК) спектров тех же образцов, на автоматическом регистрирующем спектрометре ИКС-22. Как видно из рисунка 1, существенные и однотипные по характеру изменения по мере перехода от кривой 1 к  кривым 2 и 3 обнаруживаются для четырех длинноволновых полос: 1410, 1340, 1205 и 1080 см-1, особенно для второй и четвертой из них. Полосы 1420 и 1220 см-1 в спектре чистой желатины принадлежат соответственно ионизованной и не ионизованной формам карбоксильной группы COOH, легко переходящей в COOMe, что должно сопровождаться длинноволновым сдвигом полос (в данном случае до 1410 и 1205 см-1) вследствие утяжеления группы. Следовательно, полученные результаты говорят в пользу связывания желатины с галогенидами или другими солями серебра через аспарагиновые остатки являющиеся основным поставщиком, как уже говорилось выше, группа COOH.

29-01-2020 15-18-19

Рис. 1 – ИК – спектры поглощения чистой инертной желатины (1), полученной на ней примитивной AgBr-эмульсии (2),после лазерного экспонирования (3). Для удобства рассматривания кривых ординаты каждой следующей кривой сдвинуты относительно предыдущей

Итак, из всех изложенных результатов следует образование связей желатины с Ag, различных для двух форм дисперсности серебра – атомной и полиатомной (включая коллоидную). Та и другая, как следует из уже обсуждавшихся люминесцентных данных, участвуют в “отсасывании” электронов с мелких локальных уровней в запрещенной зоне желатины и передаче их в соединения серебра, в частности галогениды.

Используя полученные экспериментальные факты, построена теоретическая концепция возникновения аномальной фосфоресценции, у органических соединений рассматривая их как органический полупроводник.

Литература

  1. Картужанский А.Л, Азизов И.К. Спектральные и кинетические различия люминесценции фотографических желатин разных типов // Журнал прикладной спектроскопии. – 1973. – Т. 19. – № 5. – С. 872-876.
  2. Kartuzhanskii A.L., Azizov I.K. Spectral and Kinetic Differences in the Luminescence of Photographic Gelatins of Different Types // Journal of Applied Spectroscopy. – 1973. – Vol. 19. – № 5. – P. 1466 – 1470.
  3. Абазехов М.М., Азизов И.К., Картужанский А.Л. Фосфоресценция фотографических желатин, содержащих тиосульфат или сульфит // Журнал научной и прикладной фотографии и кинематографии. – 1975. – № 2. – С. 145-147.
  4. Азизов И.К. и др. Участие электронных уровней эмульсионного связующего в фотографическом процессе // Журнал научной и прикладной фотографии и кинематографии. – 1975. – Т. 20. – № 3. – С. 161-171.
  5. Азизов И.К., Картужанский А.Л. Аномальная фосфоресценция поли-N-винилкарбазола // Журнал научной и прикладной фотографии и кинематографии. – 1977. – Т. 22. – № 4. – С. 289-290.
  6. Азизов И.К. и др. Люминесцентное и ИК – спектральное проявление связей желатины с галогенидом серебра // Журнал научной и прикладной фотографии и кинематографии. – 1980. – № 1. – С. 11-14.
  7. Абазехов М.М., Азизов И.К., Картужанский А.Л., Лиев А.Х. О собственных полосах фотолюминесценции микрокристаллов AgBr фотографических эмульсий // Оптика и спектроскопия. – 1982. – Т. 52. – № 2. – С. 286-288.
  8. Liev A. Kh., Kartuzhanskii A.L., Azizov I.K. Structure of the IR Emission Band of Silver Sulfide Centers in AgBr Microcrystals // Optics and Spectroscopy. -1984. –Vol. 57. – № 5. – С. 572 – 573.
  9. Лиев А.Х., Картужанский А.Л., Азизов И.К. О структуре ИК-полосы свечения сульфидосеребряных центров на микрокристаллах AgBr // Оптика и спектроскопия. – 1984. – Т. 57. – № 5. – С. 938-939.
  10. Лиев А.Х., Картужанский А.Л., Азизов И.К. Фотолюминесценция и фотолиз в смешанных системах нитрита или бромида серебра с его сульфидом // Журнал научной и прикладной фотографии и кинематографии. – 1987. – Т. 32. – № 1. – С. 3-7.
  11. Azizov I.K., Liev A.Kh., Khokonov Kh.B. Optical Phenomena in Planar AgBr Microcrystals // Crystallography Reports. – 2003. –Vol. 48. – № 2. – P. 311-314.
  12. Azizov I.K. et al. Mechanical Deformation of Flat silver Bromide Microcrystals under Illumination // Crystallography Reports. – 2012. –Vol. 57. – № 7. – P. 920 – 922.
  13. Азизов И.К., Лизарова А.В., Юрченко А.Ф. Некоторые результаты применения люминесцентного метода к исследованию эмульсионных слоев цветных фотобумаг // Журнал научной и прикладной фотографии и кинематографии. – 1973. – Т. 18. – № 1. – С. 130-132. 14. Азизов И.К., Зайденберг Я.З., Картужанский А.Л., Яхонтская Л.П. К вопросу о механизме влияния родия на галогенидосеребряные эмульсии // Журнал научной и прикладной фотографии и кинематографии. – 1973. – Т. 18. – №3. – С. 203-205.
  14. Азизов И.К., Белоус В.М., Картужанский А.Л. Люминесцентное исследование мелких уровней захвата электронов, участвующих в образовании скрытого фотографического изображения // Журнал научной и прикладной фотографии и кинематографии. – 1973. – № 2. – С. 125-127.
  15. Лиев А.Х., Ципинова А.Х., Пачев О.М., Азизов И.К. Люминесцентные исследования механизма спектральной сенсибилизации галогенидов серебра красителями // Вестник Кабардино-Балкарского государственного университета. – 1996. – № 1. – С. 201-207.
  16. Азизов И.К., Лиев А.Х., Хоконов Х.Б. Оптические явления в плоских МК галогенидов серебра // Кристаллография. – 2002. – № 6. – С. 346-349. 18. Азизов И.К., Белимготов Б.А. Люменесценция галогенидов серебра при комнатной температуре // Вестник Дагестанского научного центра РАН. – 2001. – № 12. – С. 42-46.
  17. Азизов И.К., Ципинова А.Х. Механизм фотолиза в микрокристаллах галогенида серебра // Вестник Дагестанского научного центра РАН. – 2002. – № 1. – С. 37-39.

Leave a Comment

Your email address will not be published. Required fields are marked *

Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.