Pages Navigation Menu

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

ISSN 2227-6017 (ONLINE), ISSN 2303-9868 (PRINT), DOI: 10.18454/IRJ.2227-6017
ПИ № ФС 77 - 51217, 18+

ВИЗУАЛИЗАЦИЯ МАТРИЦЫ УПРУГИХ СВОЙСТВ КУБИЧЕСКИХ КРИСТАЛЛОВ С ПОМОЩЬЮ СПЕЦИАЛИЗИРОВАННЫХ ГРАФИЧЕСКИХ ПАКЕТОВ

Опубликовано в 2018, Выпуск №10(76) Октябрь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Выполнен обзор средств визуализации упругих свойств кубических кристаллов на основании матрицы упругих постоянных. В качестве примера использованы данные измерений cij кубических монокристаллов TiNi, известных мартенситными превращениями, эффектами памяти формы и сверхэластичности, а также изоморфных никелиду титана кристаллов TiFe. Матрица упругих постоянных кристаллов была визуализирована с помощью программы компьютерной алгебры Mathcad, расчетно-графических программ ELATE: Elastic tensor analysis и SC-EMA: Self-Consistent Elasticity of Multi-phase Aggregates. Получены характеристические поверхности модуля Юнга, сдвига и коэффициента Пуассона.

Далее

ОСОБЕННОСТИ НАНОСТРУКТУРНЫХ СОСТОЯНИЙ МЕХАНОСИНТЕЗИРОВАННЫХ ПОРОШКОВЫХ СТАЛЕЙ, ЛЕГИРОВАННЫХ CR И SI

Опубликовано в 2018, Выпуск №10(76) Октябрь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Исследовано влияние легирования элементами замещения (Cr, Si) на формирование наноструктур в порошковых нанокристаллических сталях на основе Fe-1мас. % С, полученных механосплавлением исходных порошков железа и графита. Исследования проводили методами рентгеновской дифракции и магнитной структуроскопии. В наноструктуре сталей углерод распределен между объемами нанозерен феррита и зернограничными сегрегациями. Концентрация углерода в феррите изменяется в пределах 0,2 – 0,37 ат. % в зависимости от легирования. Cr и Si повышают концентрацию углерода в феррите по сравнению с нелегированной сталью. Концентрация углерода в зернограничных сегрегациях изменяется в пределах (1,1 – 1.7)•10-5 моль/м2. Сr понижает концентрацию углерода в сегрегациях, Si – изменяет мало. Концентрация углерода в сегрегациях определяется, главным образом, размерами зерен и связанной с ними протяженностью границ, достигаемыми при механосплавлении.

Далее

СМЕШАННАЯ ЗАДАЧА ДЛЯ ОДНОГО КВАЗИЛИНЕЙНОГО ПАРАБОЛИЧЕСКОГО УРАВНЕНИЯ С ГИСТЕРЕЗИСОМ

Опубликовано в 2018, Выпуск №9(75) Сентябрь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

В данной работе рассматривается начально-краевая задача для одного квазилинейного параболического уравнения с запоминающим оператором в ограниченной области с достаточно гладкой границей. Доказана теорема о существовании решений рассматриваемой начально-краевой задачи с запоминающим оператором. Для доказательства этой теоремы использован метод дискретизации по времени. Доказана также единственность решений этой задачи, если запоминающий оператор является гистерезисной нелинейностью типа обобщенного люфта.

Далее

О РАЗРЕШИМОСТИ ЗАДАЧИ КОШИ ДЛЯ СИСТЕМ НЕЛИНЕЙНЫХ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ С ПАРАМЕТРОМ

Опубликовано в 2018, Выпуск №9(75) Сентябрь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Исследовать проблему разрешимости задач Коши для нелинейных интегро-дифференциальных уравнений в частных производных можно провести методом преобразования решений. Сутью такого подхода является преобразование исходной задачи Коши в эквивалентное ей интегральное уравнение Вольтерра второго рода, к которой можно применить топологический метод – принцип сжатых отображений. Из условий сжатости оператора и определяются достаточные условия на заданные функции, при которых исходная проблема разрешима.
В данной работе исследована проблема разрешимость задачи Коши для систем нелинейных интегро-дифференциальных уравнений в частных производных первого порядка с параметром и найдено интегральное представление полученных решений. Далее, для нового класса систем нелинейных интегро-дифференциальных уравнений в частных производных третьего порядка найдены достаточные условия существования решений задачи Коши и кроме того, построено интегральное представление таких решений. В силу нелинейности начальных задач, найденные достаточные условия, вообще говоря, не гарантирует единственность полученных решений.

Далее

ПОСТРОЕНИЕ РАЗМЕЧЕННЫХ МНОЖЕСТВ ПРИМЕНЕНИЕМ ГАРМОНИЧЕСКИХ ФУНКЦИЙ

Опубликовано в 2018, Выпуск №9(75) Сентябрь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

В данной статье на основе ранних работ построены размеченные области применением гармонических функций. Даны определения и обозначения размеченных областей, рассмотрены конкретные случаи размеченных областей. А также введено понятие ориентированные размеченные области. Приведены примеры ориентированных, размеченных областей. В качестве примера применения размеченных областей рассматривается линейное сингулярно возмущенное обыкновенное дифференциальное уравнение первого порядка. Для исследования асимптотического поведения решения начальной задачи построена размеченная область. Доказана, существует часть размеченной области являющиеся областью притяжения решения вырожденного уравнения.

Далее

МИНИМАЛЬНЫЕ И МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ УПРУГИХ МОДУЛЕЙ И КОЭФФИЦИЕНТА ПУАССОНА МОНОКРИСТАЛЛОВ TiFe И TiNi С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ

Опубликовано в 2018, Выпуск №9(75) Сентябрь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Среди макроскопических характеристик твердых тел упругие свойства играют важнейшую роль в анализе потери устойчивости кристаллической решетки материалов к фазовым переходам. При переходах сдвигового типа, каковыми являются мартенситные превращения в металлах и сплавах, особое значение имеет исследование анизотропии параметров кристаллических структур: упругих модулей и постоянных, коэффициента Пуассона и других. В работе построены поверхности модулей Юнга и сдвига кристаллов, а также коэффициента Пуассона и их центральные сечения. Рассчитаны экстремальные значения модулей и коэффициента Пуассона кристаллов. Трансформация поверхностей и их центральных сечений дана в контексте потери стабильности сплавов к мартенситным превращениям.

Далее

ПОСТРОЕНИЕ ОБЛАСТЕЙ ПРИТЯЖЕНИЯ ПРИ ВЫРОЖДЕНИИ СИНГУЛЯРНО ВОЗМУЩЕННЫХ УРАВНЕНИЙ

Опубликовано в 2018, Выпуск №9(75) Сентябрь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

В работе проведен анализ систем сингулярно возмущенных обыкновенных дифференциальных уравнений. Дается обзор известных результатов по рассматриваемому вопросу и на их основе обоснована степень актуальности исследуемой задачи. Рассматривается система сингулярно возмущенных обыкновенных дифференциальных уравнений с аналитическими функциями в комплексной области. Вырожденная система, соответствующая рассматриваемой системе, теряет единственность при вырождении. Для анализа решения начальной задачи по малому параметру введено понятие области притяжения решения вырожденной системы. Поставленная задача сводится к отысканию областей притяжения. С привлечением линии уровня гармонических функций в комплексной области построены области и доказано, что они являются областями притяжения рассматриваемых решений вырожденной системы.

Далее

СИНТЕЗ И ЛЮМИНЕСЦЕНЦИЯ ДОПИРОВАННЫХ МАРГАНЦЕМ КВАНТОВЫХ ТОЧЕК СУЛЬФИДА ЦИНКА

Опубликовано в 2018, Выпуск №9(75) Сентябрь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Приведены результаты исследований оптических характеристик квантовых точек сульфида цинка и кадмия в различных органических оболочках. Продемонстрирована возможность управления основными характеристиками люминесценции различными подходами синтеза и процессом послесинтетической обработки. Определены соотношения компонентов реакционной смеси, обеспечивающие наибольшую интенсивность люминесценции. Установлено, что заключение квантовой точки в оболочку из глутатиона приводит к возникновению двух полос люминесценции с максимумами вблизи 420 и 590 нм. Для оболочки из меркаптоянтарной кислоты характерна одна полоса люминесценции вблизи 590 нм. В свою очередь, в случае оболочки из цистеина наблюдается один максимум люминесценции вблизи 500 нм.

Далее

ИССЛЕДОВАНИЕ СПЕКТРОВ ЛАЗЕРНО-ИНДУЦИРОВАННОЙ ФЛУОРЕСЦЕНЦИИ РАЗЛИЧНЫХ СОРТОВ НЕФТЕПРОДУКТОВ, РАСТВОРЕННЫХ В МОРСКОЙ ВОДЕ, ПРИ ДВУХЧАСТОТНОМ ВОЗБУЖДЕНИИ ИМПУЛЬСАМИ ФЕМТОСЕКУНДНОЙ ДЛИТЕЛЬНОСТИ f

Опубликовано в 2018, Выпуск №9(75) Сентябрь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Исследована временная динамика спектров лазерно-индуцированной флуоресценции различных сортов нефтепродуктов, растворенных в морской воде, при двухчастотном возбуждении на длинах волн 266 и 400 нм импульсами длительностью порядка 100 фс. Определены минимальные пределы обнаружения концентраций для растворов образцов флотского мазута MFO и газомоторного топлива TCM. Проведенные исследования показали, что используемый метод обладает хорошей чувствительностью и может применяться для анализа следов углеводородов в морской воде, как антропогенного, так и природного происхождения.

Далее

РАЗРАБОТКА МЕТОДОВ ЛИДАРНОГО ЗОНДИРОВАНИЯ АТМОСФЕРЫ ФЕМТОСЕКУНДНЫМИ ИМПУЛЬСАМИ

Опубликовано в 2018, Выпуск №9(75) Сентябрь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Получены данные лидарного зондирования атмосферы в переходной зоне материк-океан тремя модификациями фемтосекундного лидара, основанными на титан-сапфировом лазере с чирпированным усилением мощности: лидар упругого рассеяния, лидар комбинационного рассеяния и лидар белого света. В режиме лидара белого света зарегистрированы эмиссионные линии первой положительной системы молекул азота. Представлено сравнение полученных данных с результатами лидарного зондирования с использованием лазерных импульсов наносекундной длительности.

Далее

СИНТЕЗ НАНОПОРОШКОВ ИЗ FE:MGAL2O4 В ЛАЗЕРНОМ ФАКЕЛЕ

Опубликовано в 2018, Выпуск №8(74) Август 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Исследовались особенности получения нанопорошков Fe:MgAl2O4 путём испарения мишени из смеси простых оксидов (Fe2O3, MgO, Al2O3) импульсно-периодическим излучением CO2 лазера с пиковой интенсивностью излучения I=1,6 МВт/см2 и средней мощностью излучения Paver=600 Вт, также волоконным иттербиевым лазером (I=0,4 МВт/см2 и Paver=300 Вт). Показано, что при использовании CO2 лазера полученный нанопорошок имеет удельную поверхность 56 м2/г и содержит в себе две кристаллических фазы – MgAl2O4 (98,2 масс.%) и MgO (1,8 масс.%) с растворёнными в них ионами Fe. При средней мощности излучения 600 Вт производительность получения нанопорошка составила 16 г/час. В случае применения волоконного иттербиевого лазера полученный нанопорошок имеет в 2 раза большую удельную поверхность (105 м2/г) и содержит в себе 4 фазы: MgAl2O4 (67,5 масс.%), γ-Al2O3 (24,8 масс.%), Fe3O4 (3,2 масс.%) и MgO (4,5 вес.%). При этом производительность получения нанопорошка из-за образования на поверхности мишени «леса» из выступов высотой 4÷5мм, покрытых слоем полупрозрачного оплавленного слоя, составила только 2,7г/час. Значительные различия в фазовых составах полученных этими лазерами нанопорошков связывается с большей скоростью охлаждения лазерного факела в случае волоконного иттербиевого лазера.

Далее

ОСОБЕННОСТИ ЭМИССИИ В НАНОЗЁРЕННОЙ СТРУКТУРЕ ПОЛУПРОВОДНИКОВ

Опубликовано в 2018, Выпуск №8(74) Август 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

В работе проведено экспериментальное исследование и теоретический анализ возможных механизмов автоэмиссии в нанозёренной структуре наиболее применяемых полупроводников (Si, GaAs, InAs, InSb). Предложена модельная схема электронных процессов. Рассчитаны параметры электронного спектра исследуемых структур. Получено качественное и количественное согласование экспериментальных результатов с теоретической оценкой, что подтверждает правомерность сформулированных модельных представлений. Проведённое исследование позволяет утверждать, что эмиттеры на основе узкозонных полупроводников А3В5 значительно эффективнее, чем на базе металлов, углерода, кремния.

Далее

СПЕКТРЫ ФОТОЛЮМИНЕСЦЕНЦИИ И ПЛАЗМЕННОГО ОТРАЖЕНИЯ КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧЕК CdSe, PbS, GaAs

Опубликовано в 2018, Выпуск №8(74) Август 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Опробована простая технология нанесения коллоидных квантовых точек (КТ) в относительно толстые (до 1 мкм) слои на стеклянной подложке. По 3D-АСМ-топограммам сделано заключение, что КТ агрегированы в конгломераты, которые состоят из плотноупакованных более мелких частиц, имеющих форму гранённых пластинок. Экспериментальные характеристики спектров фотолюминесценции хорошо согласуются с теоретическими. При переносе КТ из суспензии на подложку наблюдается снижение квантового выхода. Обнаружено резонансное отражение на КТ-PbS в области спектра ~ 8 мкм и КТ-CdSe/CdS – ~ 2 мкм.

Далее

О ПЕРИОДИЧЕСКИХ РЕШЕНИЯХ КРАЕВОЙ ЗАДАЧИ ДЛЯ КВАЗИЛИНЕЙНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ ВОЛЬТЕРРА

Опубликовано в 2018, Выпуск №8(74) Август 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Изучена проблема: при выполнении каких условий периодическая функция будет решением интегрального уравнения Вольтерра с периодическими коэффициентами. В данной работе найдены достаточные условия существования периодических решений краевой задачи для квазилинейных интегральных уравнений Вольтерра, которые стремятся к решению периодической краевой задачи для порождающего уравнения. При этом применяется принцип сжатых отображений и условия аналитичности заданных функций. Само решение квазилинейных интегральных уравнений Вольтерра построено в пространстве непрерывных функций.

Далее

ОБ ОДНОМ СЛУЧАЕ ИССЛЕДОВАНИЯ ПРИНУДИТЕЛЬНОЙ СИНХРОНИЗАЦИИ МЕТОДОМ ПРИБЛИЖЕННЫХ ТОЧЕЧНЫХ ОТОБРАЖЕНИЙ

Опубликовано в 2018, Выпуск №8(74) Август 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Рассматривается вопрос о возможности исследования синхронизации квазигармонического осциллятора с нелинейностью типа кубической параболы методом приближенных точечных отображений. Вопрос о синхронизации квазигармонического осциллятора сводится к решению вопроса о существовании неподвижных точек точечного отображения, при построении которого применяется метод последовательных приближений. Предложенный метод исследования является асимптотическим методом, поэтому важным является также вопрос о применимости результатов приближенного исследования при конкретных значениях малого параметра. В настоящей статье предложено рассматривать задачу о применимости результатов приближенного исследования, оценивая степень близости приближенного точечного отображения к точному отображению.

Далее

КОЭФФИЦИЕНТ ПУАССОНА ДЕНТИНА КАК АНИЗОТРОПНОЙ СРЕДЫ С ГЕКСАГОНАЛЬНОЙ СИММЕТРИЕЙ

Опубликовано в 2018, Выпуск №7(73) Июль 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Коэффициент Пуассона (поперечной деформации) играет важную роль в деформационном поведении материалов. Наравне с модулем Юнга он составляет двойку независимых и наиболее информативных материальных констант твердых тел. Для твердых тканей зуба (эмали и дентина) коэффициент Пуассона должен соответствовать коэффициенту Пуассона реставрационных материалов во избежание перенапряжений на границе разделов реставрационный материал-эмаль и реставрационный материал-дентин. Кроме того, величина коэффициента Пуассона влияет на деформационную прочность эмали и дентина, а именно трещиностойкость, при возникновении в них напряженно-деформированного состояния. В данной работе впервые получена ориентационная зависимость коэффициента Пуассона дентина зубов на основе матриц упругих постоянных и коэффициентов податливости гексагональных кристаллов, какими являются кристаллы гидроксиапатита дентина. Результаты вычисления коэффициентов Пуассона дентина как кристаллической системы с гексагональной структурой представлены в виде таблиц и на диаграммах в полярной и декартовой системах координат. Также рассчитаны минимальный и максимальный коэффициенты для соответствующих направлений продольной и поперечной деформаций в кристаллографической системе координат. Показано, что максимальное значение коэффициента Пуассона дентина (0,53) больше верхнего предела для коэффициента Пуассона изотропных материалов, в том числе известных реставрационных материалов, что в ряде случаев может снижать качество реставраций в микрообъемах. Отмечается, что аналогичный анализ может быть выполнен и для эмали зубов.

Далее

О ВЛИЯНИИ ПРОДОЛЬНОГО ДВИЖЕНИЯ ПЫЛИ НА УСТОЙЧИВОСТЬ ОДНОРОДНОГО СОСТОЯНИЯ МАГНИТОАТИВНОЙ ПЫЛЕВОЙ ПЛАЗМЫ

Опубликовано в 2018, Выпуск №7(73) Июль 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

Рассматривается распространение низкочастотных электромагнитных волн малой амплитуды в пылевой плазме малого давления. Пыль считается холодной и имеющей как поперечную, так и продольную скорость движения по отношению к направлению внешнего магнитного поля. Аналитически изучается дисперсионное уравнение четвертой степени для фазовых скоростей волн. Получены ограничения на невозмущенные параметры плазмы, при выполнении которых однородное состояние плазмы является устойчивым. Показано, что при отсутствии или достаточно больших значениях составляющей скорости пылевой компоненты вдоль магнитного поля однородное состояние плазмы является неустойчивым относительно малых возмущений.

Далее

РАСЧЕТ КОЭФФИЦИЕНТОВ ВЯЗКОСТИ И ДИФФУЗИИ РАЗРЕЖЕННЫХ БИНАРНЫХ ГАЗОВЫХ СМЕСЕЙ ДВУОКИСИ УГЛЕРОДА С ЭТАНОМ И ПРОПАНОМ

Опубликовано в 2018, Выпуск №7(73) Июль 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

На основе молекулярно-кинетической теории газов предлагается методика расчета коэффициентов вязкости и взаимной диффузии (КВД) разреженных бинарных газовых смесей для различных температур и составов смеси. Представлены результаты расчетов вязкости двуокиси углерода с этаном и двуокиси углерода с пропаном в диапазоне температур 250 – 1200 К для различных составов смесей, а также КВД для эквимолярных смесей указанных газов в том же температурном диапазоне. Проведено сравнение полученных значений свойств с расчетными и экспериментальными результатами других авторов.

Далее

О КВАЗИРЕЛЯТИВИСТСКИХ УРАВНЕНИЯХ ДЛЯ ПЛАЗМЫ СОЛНЕЧНОЙ КОРОНЫ И ВАРИАНТ ОБЪЯСНЕНИЯ ЕЕ ВЫСОКОЙ ТЕМПЕРАТУРЫ

Опубликовано в 2018, Выпуск №6(72) Июнь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

В статье выводятся квазирелятивистские уравнения из нерялитивистских внесением в них соответствующих изменений. Они включают в себя уравнения непрерывности, законы сохранения импульсов и энергий как для протонов, так и для электронов. Это необходимо, так как гидродинамические и электрические силы, действующие на них, примерно одинаковы, а, следовательно, их импульсы тоже примерно одинаковы. Обычная скорость протонов в солнечной короне порядка 500 км/с, а соответствующая скорость электронов для такого импульса составляет 0.953 c, поэтому электроны необходимо учитывать и они релятивистские. Выражения для столкновительных членов тоже адаптированы к релятивистским скоростям. Тепло, выделяющееся в результате трения между электронными и протонными потоками, оказывается достаточным для нагрева плазмы. Концентрация ne =1010 см-3 и количество выделяющейся при рассеянии энергии компенсируют большое время свободного пробега.

Далее

К ПРОЕКТИВНЫМ СВОЙСТВАМ ФИЗИЧЕСКОГО ПРОСТРАНСТВА-ВРЕМЕНИ. ЧАСТЬ II. О МЕРАХ И КРИВИЗНЕ В КЛАССИЧЕСКОЙ ГЕОМЕТРИИ ЛОБАЧЕВСКОГО ‒ БОЛЬЯИ

Опубликовано в 2018, Выпуск №6(72) Июнь 2018, ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ | Нет комментариев

В предположении, что 4-х мерное физическое пространство (пространство-время) является проективным, а его геометрия ‒ классической неевклидовой геометрией Лобачевского ‒ Больяи (гиперболической геометрией) рассмотрены следующие задачи: 1) обоснование с помощью проективной геометрии существования в геометрии Лобачевского ‒ Больяи двух основных неевклидовых мер расстояния − аддитивной классической неевклидовой меры и неаддитивной неевклидовой меры, которая является обобщением физического интервала между событиями; 2) вывод формул, описывающих преобразование координат между двумя автополярными системами координат, − рассмотрен случай взаимного расположения двух автополярных систем координат 4-х мерного проективного гиперболического пространства, когда ось времени и одна из координатных пространственных осей обеих систем лежат в одной плоскости, а две другие оси систем соответственно попарно параллельны; 3) обоснование кривизны плоской неевклидовой геометрии как кривизны меры; 4) вывод формул, описывающих изменение со временем расстояния, скорости и ускорения между инерциальными системами в 4-х мерном случае.

Далее