Pages Navigation Menu

ISSN 2227-6017 (ONLINE), ISSN 2303-9868 (PRINT), DOI: 10.18454/IRJ.2227-6017
ПИ № ФС 77 - 51217, 16+

DOI: https://doi.org/10.23670/IRJ.2019.86.8.038

Скачать PDF ( ) Страницы: 83-85 Выпуск: № 8 (86) Часть 2 () Искать в Google Scholar
Цитировать

Цитировать

Электронная ссылка | Печатная ссылка

Скопируйте отформатированную библиографическую ссылку через буфер обмена или перейдите по одной из ссылок для импорта в Менеджер библиографий.
Масёнене А. Р. ИСПОЛЬЗОВАНИЕ СОЛНЦЕЗАЩИТНЫХ КОНСТРУКЦИЙ В СВЕТОПРОЗРАЧНЫХ ФАСАДАХ БОЛЬШОЙ ПЛОЩАДИ ДЛЯ ПАССИВНОЙ КОМПЕНСАЦИИ ТЕПЛОПОТЕРЬ НА ПОДДЕРЖАНИЕ КОМФОРТНОГО МИКРОКЛИМАТА ПОМЕЩЕНИЙ / А. Р. Масёнене, А. И. Масёнис // Международный научно-исследовательский журнал. — 2019. — № 8 (86) Часть 2. — С. 83—85. — URL: https://research-journal.org/arch/use-of-solar-protective-structures-in-transparent-facades-of-the-big-area-for-passive-compensation-heat-loss-to-maintain-a-comfortable-microclimate-of-premises/ (дата обращения: 20.11.2019. ). doi: 10.23670/IRJ.2019.86.8.038
Масёнене А. Р. ИСПОЛЬЗОВАНИЕ СОЛНЦЕЗАЩИТНЫХ КОНСТРУКЦИЙ В СВЕТОПРОЗРАЧНЫХ ФАСАДАХ БОЛЬШОЙ ПЛОЩАДИ ДЛЯ ПАССИВНОЙ КОМПЕНСАЦИИ ТЕПЛОПОТЕРЬ НА ПОДДЕРЖАНИЕ КОМФОРТНОГО МИКРОКЛИМАТА ПОМЕЩЕНИЙ / А. Р. Масёнене, А. И. Масёнис // Международный научно-исследовательский журнал. — 2019. — № 8 (86) Часть 2. — С. 83—85. doi: 10.23670/IRJ.2019.86.8.038

Импортировать


ИСПОЛЬЗОВАНИЕ СОЛНЦЕЗАЩИТНЫХ КОНСТРУКЦИЙ В СВЕТОПРОЗРАЧНЫХ ФАСАДАХ БОЛЬШОЙ ПЛОЩАДИ ДЛЯ ПАССИВНОЙ КОМПЕНСАЦИИ ТЕПЛОПОТЕРЬ НА ПОДДЕРЖАНИЕ КОМФОРТНОГО МИКРОКЛИМАТА ПОМЕЩЕНИЙ

ИСПОЛЬЗОВАНИЕ СОЛНЦЕЗАЩИТНЫХ КОНСТРУКЦИЙ В СВЕТОПРОЗРАЧНЫХ ФАСАДАХ БОЛЬШОЙ ПЛОЩАДИ ДЛЯ ПАССИВНОЙ КОМПЕНСАЦИИ ТЕПЛОПОТЕРЬ НА ПОДДЕРЖАНИЕ КОМФОРТНОГО МИКРОКЛИМАТА ПОМЕЩЕНИЙ

Научная статья

Масёнене А.Р.1, *, Масёнис А.И.2

1 ORCID: 0000-0001-7811-3855,

1 Автономная некоммерческая организация профессионального образования «Калининградский бизнес колледж», Калининград, Россия;

2 Общество с ограниченной ответственностью «Аква-архитектурное бюро», Калининград, Россия

* Корреспондирующий автор (akvaarch[at]rambler.ru)

Аннотация

Несмотря на повсеместное использование в архитектуре гражданских зданий светопрозрачных фасадов больших площадей, остается не решенным большое количество технических вопросов связанных с повышением прочностных и теплозащитных характеристик основных материалов для изготовления фасадных конструкций. В настоящей статье рассмотрены основные варианты технических мероприятий для обеспечения требуемых теплозащитных характеристик светопрозрачных ограждающих конструкций, непосредственно влияющие на комфортность климата в помещениях гражданских зданий с большими площадями остекления. Результаты данного исследования позволяют упорядочить теоретическую и техническую информацию о способах пассивной компенсации влияния больших площадей остекления на климатические характеристики воздушной среды помещений гражданских зданий.

Статья адресована проектировщикам, научным работникам, преподавателям, студентам вузов и аспирантам.

Ключевые слова: светопрозрачные фасады, теплотехнические характеристики остекленных фасадов, климатические характеристики воздушной среды помещений, инсоляция, солнцезащита, перегрев помещений.

USE OF SOLAR-PROTECTIVE STRUCTURES IN TRANSPARENT FACADES OF THE BIG AREA FOR PASSIVE COMPENSATION HEAT LOSS TO MAINTAIN A COMFORTABLE MICROCLIMATE OF PREMISES

Research article

Masyonene A.R.1, *, Masyonis A.I.2

1 ORCID: 0000-0001-7811-3855,

1 Autonomous non-profit organization of vocational education «Kaliningrad Business College», Kaliningrad, Russia;

2 Limited Liability Company «Aqua-Architectural Bureau», Kaliningrad, Russia

* Corresponding author (akvaarch[at]rambler.ru)

Abstract

Despite the widespread use in architecture of civil buildings of translucent facades of large areas, a large number of technical issues related to the improvement of the strength and heat-shielding characteristics of basic materials for the manufacture of facade structures remain unresolved. This article describes the main options for technical measures to ensure the required heat-shielding characteristics of translucent facades that directly affect the comfort of the climate in the premises of civil buildings with large glass areas. The results of this study make it possible to streamline theoretical and technical information about the methods of passive compensation of the influence of large areas of glazing on the climatic characteristics of the air environment of civilian buildings.

The article is addressed to designers, researchers, teachers, university students and graduate students.

Keywords: keyword translucent facades, thermal characteristics of glazed facades, climatic characteristics of the indoor air environment, insolation, sun protection, overheating of the premises.

Introduction

Since the appearance of the first skyscraper with a fully glazed facade, the use of translucent facades is growing in civil construction exponentially. The possibility of free shaping and modern development of technologies stimulates an architectural thought of the whole world to create unique “glass” buildings with a unique shape. However, glass as a building material has a number of limitations, mainly concerning strength and heat technical characteristics. In this regard, the question of maintenance of a comfortable microclimate of premises in civil buildings with large areas of translucent facades is relevant. In this article questions of application of sun-protection designs are considered, conclusions are drawn on their efficiency.

The main advantages and disadvantages of translucent facades

Let’s list the main unique positive aspects which are connected with application in construction of translucent facades [7]: – the “facilitated” appearance of buildings; – increase in useful area of premises; – long service life; – feeling of spaciousness  and ease in the premises, implementation of the concept “open space”; – freedom of shaping for creation of unique architectural objects.

The main disadvantages of translucent facades [7]: – heat loss of premises in cold season through the glazed surfaces; – overheating of the premises under sunlight; – increasing energy consumption to maintain a comfortable climatic characteristics of the air space; – reducing the illumination of premises associated with the use of low-emission glass coated, frosted and painted; – the psychological discomfort associated with a decrease in the privacy of premises.

The main problems and limitations connected with use of glass for filling of translucent facades

The main limitations of glass as a building material for translucent facades that have not been resolved to date are the following [10]: – limited size – 3.21 m x 6.00 m; – significant weight – 1 sq.m of glass with a thickness of 1 mm weighs 2.5 kg; – the fragility of glass and impossibility of bending; – low thermal characteristics compared to traditional wall materials.  In addition, during operation there are additional negative factors: – destruction of double-glazed windows due to the ” thermal shock” arising at uneven heating of structures; – destruction of double-glazed windows due to the pressure drop in the inter-glass space and atmospheric; – gradual increase in air permeability of windows in connection with wear; – condensation in the places of conjugation of double-glazed windows with a window profile, as well as on slopes of window openings; – increase in relative humidity and air temperature owing to insufficient air exchange in premises.

Application of sun protection devices to control and maintain the climatic characteristics of the indoor air

The company “Somfy International” conducted a study of employee satisfaction with the quality of lighting in the premises. The results showed that in administrative buildings 86 % of respondents believe that improving the quality of illumination will reduce vision problems during normal office work and 75% would like to independently adjust the level of illumination. It was also found that the need for lighting varies significantly with age and for older people the required intensity of lighting is 40 % higher than the needs of young people [5]. Most of the heat loss in buildings occurs through glazed surfaces and is about 46%, through walls – 30%, through the floor and roof – 10-15% [9]. Experience in the construction of civil buildings with large areas of translucent structures showed that the most expensive part of the operation is the leveling of overheating of the air in the summer, as the cost of cold production is four times higher than the cost of heat production. One of the solutions to this problem is the use of sun protection devices. The main types are discussed in more detail.

In accordance with GOST 33125-2014 [1] sun protection devices are divided into the following indicators: 1) at the place of installation and position relative to the translucent structure: – external; – inter-glass; – inter-glass with ventilation of inter-glass space for installation in double facades; – internal; – a combination of some of the listed places of installation; 2) according to the type of sun protection device and design of shading elements: – solid shading elements (visors, balcony plates, vertical pylons, sun covers; – using a number of parallel slats; 3) according to the control method: – stationary unregulated (passive), including sun and multifunctional glasses, as well as covered with sun films (geometric parameters do not change throughout the life); – adjustable (geometric parameters can change); 4) according to the method of regulation: – actively adjustable (controlled without automated algorithms); – cyclically adjustable (according to the daily or annual cycle); – adaptively adjustable (depending on environmental conditions); – passive-adaptive (due to changes in the aggregate state under environmental conditions); – active-adaptive (depending on the data of meteorological sensors); – several types of control at the same time; 5) orientation of shading elements: – horizontal; – vertical; – General position; – combined; 6) the material of manufacture of shading elements: – metal; – plastic; – fabric; – wood; – decorative concrete; – glass; – composite materials with low values of heat capacity; – special sunscreen and multifunctional glass and film; 7) the level of sun protection: – very high 0-0,2; – high 0,21-0,4; – average 0,41-0,6; – low 0,61-0,8; very low 0,81-1,0.

In accordance with SP 50.13330.2012 [2] the transmittance of solar radiation of the sun protection device should be no more than: – 0.2 – for residential and public buildings; – 0,4 – for industrial buildings. According to SP 52.13330 [3], sun protection devices must provide visual comfort in the premises, for this it is necessary to provide for the use of devices with a rational light transmission coefficient, as well as provide: – visual contact of premises with the environment; – exclusion of direct sunlight in the field of view of workers; – ensuring maximum use of natural light in buildings; – minimizing color distortion. According to SP 370.1325800.2017 [4] should be envisaged rational location of shading devices relative to the translucent constructions: – with inside side 1 climate zone; – between glass panes and the inner in the 2nd climatic zone; – the outer South-Western and Western facades in climate zone 3; – exterior, North facade 4 climate zone; – outside in 5 climatic zone. The most effective constructive arrangement of shading elements relative to the cardinal directions: – horizontal (S); – vertical (N, N-E, N-W); – combined (S-W, S-E); – General position (S-W, W, S-E); – casings (universal).

Experience in the construction and operation of buildings with glazed facades and additional shading devices showed the possibility of solving several tasks simultaneously: – to provide the possibility of regulating the flow of solar heat into the premises; – reducing the voltage of the outer glass from the effects of high temperatures; – giving additional architectural expressiveness to the building [6]. In addition, modern systems of specialized lamellas with solar modules integrated into them can significantly save energy costs during the operation of the building.

Conclusion

It should be noted that the use of active-adaptive systems for regulating the system of shading sun-protection devices is the most expensive and leads to an increase in the initial investment in the construction of buildings. In this case, it requires the creation of complex automated control systems and monitoring the climatic characteristics of energy-efficient buildings based on processing large data arrays (BigData) and using artificial intelligence (AI), which has become possible due to the exponential technological leap of the last 20 years.

Конфликт интересов

Не указан.

Conflict of Interest

None declared.

 

Список литературы / References

  1. ГОСТ 33125-2014 Устройства солнцезащитные. Технические условия.
  2. СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 (с Изменением N 1).
  3. СП 52.13330.2016 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95*
  4. СП 370.1325800.2017 Устройства солнцезащитные зданий. Правила проектирования.
  5. Briganti A. Светопрозрачные ограждения как элемент системы регулируемого воздухообмена помещений / под. ред. Н. В. Шилкина, перевод С. Н. Булекова // AВОК. – – №2.
  6. Здания и сооружения со светопрозрачными фасадами и кровлями / под ред. И.В. Борискиной // Инженерно-информационный Центр Оконных Систем. – 2012.
  7. Магай А.А. Инновационные технологии в остеклении фасадов высотных зданий / Семикин П.П. // Энергосовет. – 2012. – №4(23) – С. 48-51.
  8. Паулаускайте С. Анализ эффективности пассивных мер энергосбережения в зданиях с большой площадью остекления / С. Паулаускайте, В. Лапинскене. // Вестник МГСУ. 2011. № 7, с. 90-97.
  9. Poderytė J. The research of supplied air flow parameters in air heated buildings / J. Poderytė, R. Bliūdžius, K. Banionis, E. Blaževičius , A. Burlingis // ISSN 1392 – 1207. MECHANIKA. 2013 Volume 19(4): 410-416.
  10. Рутштейн Е.И. Полное остекление высотного здания. Его влияние на внутренний микроклимат помещений // Научное сообщество студентов: Междисциплинарные исследования: сб. ст. по мат. XLI междунар. студ. науч.-практ. конф. № 6(41). URL: https://sibac.info/archive/meghdis/6(41).pdf дата обращения: 28.07.2019)

Список литературы на английском языке / References in English

  1. GOST 33125-2014 Ustroystvo VS. Tekhnicheskiye usloviya [Device sun. Technical conditions]. [in Russian]
  2. SP 50.13330.2012 Teplovaya zashchita zdaniy. Obnovlennaya versiya SNiP 23-02-2003 (s izmeneniyem N 1) [Thermal protection of buildings. Updated version of SNiP 23-02-2003 (with Change N 1)]. [in Russian]
  3. SP 52.13330.2016 Yestestvennoye i iskusstvennoye osveshcheniye. Obnovlennoye izdaniye SNiP 23-05-95 * [Natural and artificial lighting. The updated edition of SNiP 23-05-95*].[in Russian]
  4. SP 370.1325800.2017 Ustroystvo solntsezashchitnykh ochkov zdaniy. Pravila oformleniya. [ Device sunglasses buildings. Design rules]. [in Russian]
  5. Briganti A. Svetoprozrachnyye ograzhdeniya kak element sistemy reguliruyemogo vozdukhoobmena pomeshcheniy [Translucent fencing as an element of the system of regulated air exchange of premises] / pod. red. [under. ed.] N. V. Shilkin, perevod [translated by] S. N. Bulekov // AVOK. – 2007. – №2. [in Russian]
  6. Zdaniya i sooruzheniya s svetoprozrachnymi fasadami i kryshami [Buildings and structures with translucent facades and roofs] / pod red. [ed.] IV Boriskina // Inzhenerno-informatsionnyy tsentr okonnykh sistem. [Engineering information Center of Window Systems.] – 2012. [in Russian]
  7. Magay A. A. Innovatsionnyye tekhnologii v osteklenii fasadov vysotnykh zdaniy [Innovative technologies in glazing of facades of high-rise buildings] / Semikin, P. P. // Energosovet. – 2012. – №4(23) – P. 48-51. [in Russian]
  8. Paulauskayte S. Analiz effektivnosti passivnykh energosberegayushchikh meropriyatiy v zdaniyakh s bol’shoy ploshchad’yu ostekleniya [Analysis of the effectiveness of passive energy saving measures in buildings with a large area of glazing] / S. Paulauskaite, V. Lapinskene. // Vestnik MGSU. 2011. № 7, p. 90-97. [in Russian]
  9. Poderite, Yu. Issledovaniye parametrov podavayemogo vozdushnogo potoka v zdaniyakh s vozdushnym otopleniyem [Investigation of the parameters of the air flow supplied in buildings with air heating] / Yu. Poderite, R. Bluejius, K. Banionis, E. Blazevičius, A. Burlingis // ISSN 1392 – 1207. MEKHANIKA [MECHANICS]. 2013 Tom [Volume] 19 (4): 410-416.
  10. Rutstein E.I. Polnoye ostekleniye vysotnogo zdaniya. Yego vliyaniye na vnutrenniye mikroklimaticheskiye pomeshcheniya [Full glazing high-rise building. His influence on the internal microclimatic rooms] // Nauchnoye soobshchestvo studentov: Mezhdistsiplinarnyye issledovaniya: sb. st. po mat. [Scientific community of students: Interdisciplinary research: Sat. Art. according to mat.] XLI mezhdunar. stud. nauch.-prakt. konf. [Intern. stud scientific-practical conf.] No. 6 (41). URL: https://sibac.info/archive/meghdis/6(41).pdf (data obrashcheniya: 28.07.2019).[ appeal date: 07/28/2019)]. [in Russian]

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.