ТЕРМОЭЛЕКТРИЧЕСКИЙ РАДИАТОР СИСТЕМЫ ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Научная статья
Выпуск: № 9 (40), 2015
Опубликована:
2015/10/15
PDF

Папкин Б.А.1, Коротков В.С.2, Татарников А.П.3

1Кандидат технических наук, заместитель директора, 2ведущий инженер-исследователь, 3инженер-исследователь 1 категории, научно-технический центр «Силовые агрегаты» Московского государственного машиностроительного университета (МАМИ), Москва

Работа проводится при финансовой поддержке Министерства образования и науки Российской Федерации в рамках договора № 14.Z56.15.3290-МК от "16" февраля 2015 года об условиях использования гранта Президента Российской Федерации для государственной поддержки молодых российских ученых с организациями - участниками конкурсов, имеющими трудовые отношения с молодыми учеными МК-3290.2015.8

ТЕРМОЭЛЕКТРИЧЕСКИЙ РАДИАТОР СИСТЕМЫ ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Аннотация

В статье рассмотрено одно из направлений утилизации тепловой энергии, отводимой системой охлаждения двигателей внутреннего сгорания - прямое преобразование ее в электроэнергию в термоэлектрических генераторах. Рассмотрены примеры конструкций термоэлектрических генераторов для систем охлаждения двигателей внутреннего сгорания. Показана конструкция разработанного термоэлектрического радиатора, упрощающая его применение в серийно выпускаемых транспортных средствах, и приведены его технические характеристики.

Ключевые слова: двигатель внутреннего сгорания; термоэлектрический модуль; система охлаждения; удельный эффективный расход топлива.

Papkin В.A.1, Korotkov V.S.2, Tatarnikov A.P.3

1PhD in Engineering, deputy director, 2 leading research engineer, 3 research engineer, R&D Center "Propulsion Systems" Moscow state university of mechanical engineering (MAMI), Moscow

THERMOELECTRIC RADIATOR FOR INTERNAL COMBUSTION ENGINE COOLING SYSTEM

Abstract

The article deals with one of the areas of utilization of heat energy withdrawn cooling system of the internal combustion engine - its direct conversion into electricity in thermoelectric generators. Examples of constructions of thermoelectric generators for the cooling systems of internal combustion engines. Shows the construction of a thermoelectric radiator developed, simplifying its use in mass-produced vehicles, and given its characteristics.

Keywords: internal combustion engine; thermoelectric module; cooling system; specific fuel consumption.

В настоящее время в крупных мегаполисах и регионах Российской Федерации значительно возрастает парк автотранспортных средств, энергетические энергоустановки которых наносят значительный урон окружающей среде.

Двигатели внутреннего сгорания, особенно применяемые на транспорте, выбрасывают около четверти всех антропогенных парниковых газов, причем на долю углекислого газа приходится почти 90% выбросов всех парниковых газов. Эти выбросы напрямую связаны со сгоранием топлива и пропорциональны его расходу.

Внешний тепловой баланс двигателей внутреннего сгорания показывает [1], что значительная часть тепла, получаемого в результате сгорания питающего его топлива, выбрасывается с выпускными газами и отводится в систему охлаждения. Только 30% энергии идёт на полезную работу (если авто оснащено бензиновым двигателем, если же дизелем — несколько больше), примерно 30% уходит через систему охлаждения двигателя и до 35% — с выхлопными газами. Это большой потенциальный ресурс для повышения экономичности машин и значительную часть этой энергии можно использовать для различных целей [2]. Одним из направлений утилизации тепловой энергии, отводимой системами выпуска отработавших газов и охлаждения двигателей внутреннего сгорания, является прямое преобразование ее в электроэнергию в термоэлектрических генераторах.

Эффект Зеебека, позволяющий напрямую преобразовывать тепловую энергию в электрическую, заключается в возникновении электродвижущей силы при наличии разницы температур в контактах замкнутой электрической цепи, состоящей из разнородных проводников. Однако электродвижущая сила, возникающая в цепи из двух разнородных проводников, не превышает нескольких милливольт, что достаточно для замеров температуры, но не для генерирования электроэнергии. С целью повышения эффективности как прямого преобразования тепловой энергии в электрическую, так и обратного, были созданы термоэлектрические элементы, состоящие из полупроводников p и n типов последовательно соединенных электрически и параллельно соединенных термически. Конструкция термоэлектрического генераторного модуля показана на рисунке 1.

30-09-2015 12-59-19

Рис. 1 - Конструкция термоэлектрического генераторного модуля

Отечественный и зарубежный опыт эксплуатации ТЭГ различного назначения и применения позволяет сделать вывод, что они имеют такие уникальные качества, как полная автономность, высокая надежность, простота эксплуатации, долговечность, способность работать в любом пространственном положении.

Ведущие автопроизводители, такие как General Motors, BMW и Toyota, разработали собственные термоэлектрические генераторы для утилизации тепловой энергии отработавших газов [3-5] и проводят их испытания, как лабораторные, так и в составе транспортных средств. При этом другой не менее перспективный источник теплоты, такой как система охлаждения теплового двигателя, позволяющий дополнительно улучшить энергоэффективность ДВС, рассматривается гораздо реже.

В работах [6] и [7] представлено исследование термоэлектрического генератора, смонтированного в системе охлаждения двигателя внутреннего сгорания на место штатного радиатора охлаждения. ТЭГ представляет собой систему из двух видов охлаждения - жидкостного и воздушного и включает в свою конструкцию тепловые трубки. Горячая часть генератора имеет впускные и выпускные патрубки для циркуляции охлаждающей жидкости из системы охлаждения двигателя. Охлаждающие пластины и горячая часть генератора имеют многослойную структуру. Термоэлектрические модули смонтированы на обеих сторонах горячей части генератора. Чтобы увеличить эффективную площадь поверхности горячей стороны блока ТЭГ, в конструкции предусмотрен ряд перегородок.

На рисунке 2 представлены составляющие элементы термоэлектрического генератора, вид сбоку и внутренняя структура горячей стороны блока. Стрелки указывают направление течения охлаждающей жидкости ДВС.

30-09-2015 12-59-44

Рис. 2 - Термоэлектрический генератор

Аналогичный подход к конструкции термоэлектрического радиатора отражен в патенте [8]. Конструкция представленного генератора, показанная на рисунке 3, отличается соединением высокотемпературного теплообменного аппарата, отводящего тепловую энергию от охлаждающей жидкости, и низкотемпературного теплообменного аппарата, рассеивающего тепловую энергию в набегающем потоке воздуха, с помощью тепловых трубок различной конфигурации.

30-09-2015 12-59-56

Рис. 3 - Конструкция термоэлектрического генератора с теплообменными трубками различных конфигураций

 

Рассмотренные варианты конструкции термоэлектрического радиатора обладают двумя существенными недостатками. Во-первых, наличие тепловых трубок значительно повышает себестоимость термоэлектрического радиатора и, во-вторых, что значительно ограничивает применимость данных конструкций в составе транспортных средств, оснащенных двигателями внутреннего сгорания, несовпадение габаритных и присоединительных размеров с аналогичными характеристиками штатных радиаторов.

Более целесообразным подходом в разработке конструкции, как с точки зрения снижения себестоимости готового изделия, так и упрощения последующего внедрения в транспортное средство, является сохранение габаритных и присоединительных размеров с изменением сердцевины радиатора. Это позволит использовать разработанный термоэлектрический радиатор в серийно выпускаемых транспортных средствах с сохранением компоновочной архитектуры подкапотного пространства.

В данной работе в качестве прототипа был использован штатный радиатор 21230-1301012, технические характеристики которого приведены в таблице 1.

Таблица 1 - Технические характеристики радиатора 21230-1301012

30-09-2015 13-00-39

Безусловно, для обеспечения работы двигателя внутреннего сгорания, количество тепловой энергии, отбираемой термоэлектрическим радиатором от системы охлаждения должна быть не меньше, чем теплоотдача штатного радиатора, чему может, дополнительно, способствовать прямое преобразование части теплоты в электрическую энергию в термоэлектрических генераторных модулях.

На рисунке 4 показана конструкция термоэлектрического радиатора с габаритными и присоединительными размерами, не отличающимися от аналогичных параметров радиатора 21230-1301012.

а) – вид спереди; б) - изометрический вид; в) – увеличенный местный вид; 1 – плоская трубка; 2 – термоэлектрический генераторный модуль; 3 – ребра охлаждения; 4 - вентилятор; 5 – кожух вентиляторов.

30-09-2015 13-01-01

Рис. 4 – Конструкция термоэлектрического радиатора

 

Основной функциональной частью термоэлектрического радиатора является термоэлектрический генераторный модуль. В термоэлектрических модулях происходит прямое преобразование тепловой энергии из системы охлаждения двигателя внутреннего сгорания в электрическую. Охлаждающая жидкость проходит по плоским трубкам (1), с двух сторон которых расположены термоэлектрические генераторные модули (2), к холодным сторонам которых примыкают ребра охлаждения (3). Благодаря постоянному подводу теплоты от охлаждающей жидкости к горячим сторонам термоэлектрических генераторных модулей и одновременному отводу теплоты ребрами в окружающий воздух, возникает эффект Зеебека, позволяющий получить электрическую энергию, направляемую либо в бортовую сеть транспортного средства или аккумуляторную батарею.

Разрабатываемый термоэлектрический радиатор для замены штатных радиаторов в серийно выпускаемых автомобилях с целью утилизации части тепловой энергии, отводимой системой охлаждения двигателей внутреннего сгорания, должен обладать следующими характеристиками:

  • значение теплоотдачи при стандартных условиях не менее чем у штатного радиатора, что необходимо для обеспечения заданного теплового режима работы двигателя внутреннего сгорания;
  • габаритные и присоединительные размеры, полностью совпадающие со штатным радиатором, что позволит использовать его в серийно выпускаемых транспортных средствах с сохранением компоновочной архитектуры подкапотного пространства;
  • значения аэродинамического сопротивления и гидравлического сопротивления, создаваемого в системе охлаждения, не более чем у штатного радиатора, что ограничивается производительностью вентилятора и жидкостного насоса;
  • заправочный объем, равный аналогичному показателю штатного радиатора, для сохранения общего заправочного объема системы охлаждения двигателя внутреннего сгорания на прежнем уровне.

Разработанный термоэлектрический радиатор предназначен для утилизации части тепловой энергии, отводимой системой охлаждения двигателя внутреннего сгорания, с получением электроэнергии. Внедрение в конструкцию транспортных средств, оснащенных двигателями внутреннего сгорания, разработанного термоэлектрического генератора позволит снизить потребление топлива и уменьшить отрицательное техногенное воздействие вредных выбросов с отработавшими газами на окружающую среду.

Литература

  1. Bourhis, G., Leduc, P. Energy and exergy balances for modern diesel and gasoline engines. Oil & Gas Science and Technology. 2010. Rev. IFP, Vol. 65, No. 1 P. 39-46.
  2. Khripach, N., Papkin, B. and Korotkov, V. Thermoelectric generators of motor vehicle powertrains, problems and prospects. Life Science Journal. 2014. 11(12) P.503-507.
  3. Gregory P. Prior, GM global technology operations LLC. Internal combustion engine exhaust thermoelectric generator and methods of making and using the same // Патент США № 2013/0000285, 03.01.2013.
  4. K. Shimoji, K. Suzuki, Toyota Jidosha Kabushiki Kaisha. Thermoelectric generator for internal combustion engine // Патент США № 7687704, 30.03.2010.
  5. Emitec Gesellschaft Für Emissionstechnologie Mbh, Bayerische Motoren Werke Aktiengesellschaft. Thermoelektrische Vorrichtung mit Rohrbündeln // Патент Германии № 102009033613, 20.01.2011.
  6. Baatar, N., Kim, S. A thermoelectric generator replacing radiator for internal combustion engine vehicles. Telkomnika. 2011. Vol.9, No.3 P. 523-530.
  7. Kim, S., Park, S., Kim, S. and Rhi, S.-H. A thermoelectric generator using engine coolant for light-duty internal combustion engine powered vehicles. Journal of electronic materials. 2011. Vol. 40, No. 5 P. 812-816.
  8. Chungbuk National University Industry Academic Cooperation Foundation. Thermoelectric cooling and power-generating apparatus // Патент Кореи № 100986657, 04.10.2010.

References

  1. Bourhis, G., Leduc, P. Energy and exergy balances for modern diesel and gasoline engines. Oil & Gas Science and Technology. 2010. Rev. IFP, Vol. 65, No. 1 P. 39-46.
  2. Khripach, N., Papkin, B. and Korotkov, V. Thermoelectric generators of motor vehicle powertrains, problems and prospects. Life Science Journal. 2014. 11(12) P.503-507.
  3. Gregory P. Prior, GM global technology operations LLC. Internal combustion engine exhaust thermoelectric generator and methods of making and using the same // US patent № 2013/0000285, 03.01.2013.
  4. K. Shimoji, K. Suzuki, Toyota Jidosha Kabushiki Kaisha. Thermoelectric generator for internal combustion engine // US patent № 7687704, 30.03.2010.
  5. Emitec Gesellschaft Für Emissionstechnologie Mbh, Bayerische Motoren Werke Aktiengesellschaft. Thermoelektrische Vorrichtung mit Rohrbündeln // DE patent № 102009033613, 20.01.2011.
  6. Baatar, N., Kim, S. A thermoelectric generator replacing radiator for internal combustion engine vehicles. Telkomnika. 2011. Vol.9, No.3 P. 523-530.
  7. Kim, S., Park, S., Kim, S. and Rhi, S.-H. A thermoelectric generator using engine coolant for light-duty internal combustion engine powered vehicles. Journal of electronic materials. 2011. Vol. 40, No. 5 P. 812-816.
  8. Chungbuk National University Industry Academic Cooperation Foundation. Thermoelectric cooling and power-generating apparatus // KR patent № 100986657, 04.10.2010.